Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anodic process hydrogen evolution

In ECM, the higher the applied potential difference, the greater the rate of metal dissolution at the anode and hydrogen evolution at the cathode. The shape of the curve of applied potential difference against current is shown in Fig. 2.12. For initial values of potential difference the current is low along OA. When the values of the potential difference correspond to region A, the current rises sharply. The current increases appreciably along AB when the potential difference is further increased. Point A on the curve represents the onset of anodic dissolution of the process. The cmve AB is extrapolated back to the zero value current and meets the axis of the applied potential difference at point C. The potential at point C is known as decomposition potential [1]. [Pg.43]

It follows from equation 1.45 that the corrosion rate of a metal can be evaluated from the rate of the cathodic process, since the two are faradai-cally equivalent thus either the rate of hydrogen evolution or of oxygen reduction may be used to determine the corrosion rate, providing no other cathodic process occurs. If the anodic and cathodic sites are physically separable the rate of transfer of charge (the current) from one to the other can also be used, as, for example, in evaluating the effects produced by coupling two dissimilar metals. There are a number of examples quoted in the literature where this has been achieved, and reference should be made to the early work of Evans who determined the current and the rate of anodic dissolution in a number of systems in which the anodes and cathodes were physically separable. [Pg.83]

Participation in the electrode reactions The electrode reactions of corrosion involve the formation of adsorbed intermediate species with surface metal atoms, e.g. adsorbed hydrogen atoms in the hydrogen evolution reaction adsorbed (FeOH) in the anodic dissolution of iron . The presence of adsorbed inhibitors will interfere with the formation of these adsorbed intermediates, but the electrode processes may then proceed by alternative paths through intermediates containing the inhibitor. In these processes the inhibitor species act in a catalytic manner and remain unchanged. Such participation by the inhibitor is generally characterised by a change in the Tafel slope observed for the process. Studies of the anodic dissolution of iron in the presence of some inhibitors, e.g. halide ions , aniline and its derivatives , the benzoate ion and the furoate ion , have indicated that the adsorbed inhibitor I participates in the reaction, probably in the form of a complex of the type (Fe-/), or (Fe-OH-/), . The dissolution reaction proceeds less readily via the adsorbed inhibitor complexes than via (Fe-OH),js, and so anodic dissolution is inhibited and an increase in Tafel slope is observed for the reaction. [Pg.811]

Cathodic hydrogen evolution is one of the most common electrochemical reactions. It is the principal reaction in electrolytic hydrogen production, the auxiliary reaction in the production of many substances forming at the anode, such as chlorine, and a side reaction in many cathodic processes, particularly in electrohydrometallurgy. It is of considerable importance in the corrosion of metals. Its special characteristic is the fact that it can proceed in any aqueous solution particular reactants need not be added. The reverse reaction, which is the anodic ionization of molecular hydrogen, is utilized in batteries and fuel cells. [Pg.263]

The dissolution of zinc in a mineral acid is much faster when the zinc contains an admixture of copper. This is because the surface of the metal contains copper crystallites at which hydrogen evolution occurs with a much lower overpotential than at zinc (see Fig. 5.54C). The mixed potential is shifted to a more positive value, E mix, and the corrosion current increases. In this case the cathodic and anodic processes occur on separate surfaces. This phenomenon is termed corrosion of a chemically heterogeneous surface. In the solution an electric current flows between the cathodic and anodic domains which represent short-circuited electrodes of a galvanic cell. A. de la Rive assumed this to be the only kind of corrosion, calling these systems local cells. [Pg.394]

Our investigations showed that in mixed melts of eutectic composition carbamide-NH4(K)Cl, the oxidation and reduction of melt constituents take place mainly independently of each other. The anodic process at platinum electrodes in the range of potentials below 0.9V is associated with the direct oxidation of carbamide to secondary and tertiary amide compounds, accumulation of ammonium ions in the melt, and evolution of the same gaseous products as in carbamide electrolysis [8], The cathodic process is accompanied by the formation of ammonia, CO, and C02, i.e. of the same products as in pure- carbamide electrolysis. In contrast to carbamide melt, a large amount of hydrogen appears in the cathode gases of the mixed melt, and in the anode gases of the carbamide-KCl melt, the presence of chlorine has been established at potentials above 0.9V. In the... [Pg.438]

The only cathodic process in HF solutions is the hydrogen evolution reaction (HER), which is important in that it is involved in almost all reactions at both anodic and cathodic potentials. The silicon electrode can be passivated by hydrogen termination... [Pg.315]

Consider now the processes caused by the formation of quasilevels. As was noted above, the shift of Fn relative to F is very small for majority carriers (electrons) and can usually be neglected precisely, this was done in constructing Fig. 16b. But for minority carriers (holes) the shift of Fp can be very large. The shifts of both Fnx F and Fp increase with the growing intensity of semiconductor illumination, so that for a certain illumination intensity Fp may reach the level of the electrochemical potential of anodic decomposition Fdec, p, and Fn—the level of a certain cathodic reaction (for example, reduction of water with hydrogen evolution FHljH20). These reactions start to proceed simultaneously, and their joint action constitutes the process of photocorrosion. [Pg.289]

Three anodic partial reactions are considered active dissolution of two metals M and M with different kinetics in the absence of their ions in bulk solution and decomposition of water with the evolution of oxygen. The kinetics of the latter process is so slow on most corroding metals that only at very negative potentials can oxygen present in the solution be electroreduced and this eventually becomes limited by mass transport due to the limited solubility of oxygen in water. At even more negative potentials, hydrogen evolution takes place on the electrode surface. The cathodic reduction of some metal ions present on the electrode surface as a consequence of corrosion is also considered in Fig. 13(b). [Pg.71]

If these conditions are not satisfied, some process will be involved to prevent accumulation of the intermediates at the interface. Two possibilities are at hand, viz. transport by diffusion into the solution or adsorption at the electrode surface. In the literature, one can find general theories for such mechanisms and theories focussed to a specific electrode reaction, e.g. the hydrogen evolution reaction [125], the reduction of oxygen [126] and the anodic dissolution of metals like iron and nickel [94]. In this work, we will confine ourselves to outline the principles of the subject, treating only the example of two consecutive charge transfer processes O + n e = Z and Z 4- n2e — R. [Pg.300]


See other pages where Anodic process hydrogen evolution is mentioned: [Pg.241]    [Pg.490]    [Pg.548]    [Pg.79]    [Pg.39]    [Pg.96]    [Pg.322]    [Pg.1235]    [Pg.1294]    [Pg.811]    [Pg.191]    [Pg.194]    [Pg.72]    [Pg.264]    [Pg.272]    [Pg.322]    [Pg.381]    [Pg.381]    [Pg.385]    [Pg.531]    [Pg.731]    [Pg.364]    [Pg.366]    [Pg.91]    [Pg.256]    [Pg.258]    [Pg.6]    [Pg.96]    [Pg.125]    [Pg.815]    [Pg.295]    [Pg.314]    [Pg.135]    [Pg.79]    [Pg.2]    [Pg.55]    [Pg.47]    [Pg.122]    [Pg.4]    [Pg.370]    [Pg.21]   
See also in sourсe #XX -- [ Pg.17 , Pg.18 ]




SEARCH



Anode process, 1.20

Anodic processes

Anodization process

Hydrogen evolution

Hydrogen processes

Hydrogen processing

Hydrogenation process

Hydrogenative process

© 2024 chempedia.info