Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anions intermediates

A number of novel reactions involving the a carbon atom of aldehydes and ketones involve enol and enolate anion intermediates... [Pg.768]

A nitro group is a strongly activating substituent in nucleophilic aromatic substitution where it stabilizes the key cyclohexadienyl anion intermediate... [Pg.980]

Cyclohexadienyl anion intermediate nitro group IS stabilizing... [Pg.980]

Here it is the combined electron attrachng effects of the six fluorine substituents that stabi hze the cyclohexadienyl anion intermediate and permit the reaction to proceed so readily... [Pg.980]

Nitrogen bears a portion of the negative charge in the anionic intermediate formed m the nucleophilic addition step m 4 chloropyndme but not m 3 chloropyndme... [Pg.1247]

It might be noted that most (not all) alkenes are polymerizable by the chain mechanism involving free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-radical mechanism. Carbonyl groups and some carbon-carbon double bonds are polymerized by ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic intermediate but not a cationic one, A -vinyl pyrrolidones by cationic but not anionic intermediates, and halogenated olefins by neither ionic species. In all of these cases free-radical polymerization is possible. [Pg.349]

Reactions at the a-carbons have been of considerable kiterest because it is at these positions that enzymatic oxidation, which is beheved to initiate the events leading to carcinogenic metaboUtes, generally occurs (5,7,8,73). The a-hydrogens exchange readily as shown in the following where D represents H. This exchange apparentiy results from stabilization of an anionic intermediate by electron delocalization (74,75). [Pg.108]

Selectivities to various isomers are more difficult to predict when metal oxides are used as catalysts. ZnO preferentially produced 79% 1-butene and several percent of i7j -2-butene [624-64-6] (75). CdO catalyst produced 55% 1-butene and 45% i7j -2-butene. It was also reported that while interconversion between 1-butene and i7j -2-butene was quite facile on CdO, cis—trans isomeri2ation was slow. This was attributed to the presence of a TT-aHyl anion intermediate (76). High i7j -2-butene selectivities were obtained with molybdenum carbonyl encapsulated in 2eohtes (77). On the other hand, deuteration using H1O2 catalyst produced predominantly the 1,4-addition product, trans-2-huX.en.e-d2 with no isotope scrambling (78). [Pg.342]

Experiments in which radical scavengers are added indicate that a chain reaction is involved, because the reaction is greatly retarded in the presence of the scavengers. The mechanism shown below indicates that one of the steps in the chain process is an electron transfer and that none of the steps involves atom abstraction. The elimination of nitrite occurs as a unimolecular decomposition of the radical anion intermediate, and the SrnI mechanistic designation would apply. [Pg.729]

In the pure concerted reaction there is no need to invoke the cationic or anionic intermediates in describing the transition state, but it now becomes evident that some deviation from this idealized route may be possible, and then we need a way to comment upon and to measure the extent to which the cationic or anionic character is mixed in in the transition state. This is now widely accomplished with the aid of energy surfaces of the type shown schematically in Fig. 5-19. Depending on the nature of the surface, the reaction path may follow a route far from the diagonal representing the pure concerted reaction, and the primary goal is to identify the location of the transition state on this surface. [Pg.230]

Several intermediates are involved in the latter reaction. The first is a radical anion resulting from electron transfer from sodium to the alkyne. This then deprotonates ammonia leading to a vinyl radical. The process repeats (electron transfer and deprotonation), and involves a vinyl anion intermediate. [Pg.117]

The asymmetric addition of organolithium reagents to arylox azolines has been used to construct highly complex polycyclic terpene structures found in natural products. For example, the asymmetric addition of vinyllithium to chiral naphthyloxazoline 3 followed by treatment of the resulting anionic intermediate with iodoethyl dioxolane 61... [Pg.244]

Interconversion between two tautomeric structures can occur via discrete cationic or anionic intermediates (scheme 24, where T is an anion capable of reacting with a proton at a minimum of two distinct sites). Alternatively, interconversion can occur by simultaneous loss and gain of different protons (scheme 25, w here T has the same definition as in scheme 24). These mechanisms are well established for acyclic compounds, but they have been much less thoroughly investigated for heteroaromatic systems. The rate of interconversion of two tautomers is greatest when both of the alternative atoms to which the mobile proton can be attached arc hetero atoms, and isolation of the separate isomers is usually impossible in this case. If one of the alternative atoms involved in the tautomerization is carbon, the rate of interconversion is somewhat slower, but still fast. When both of the atoms in question are carbon, however, interconversion is... [Pg.317]

Nucleophilic aromatic substitution occurs only if the aromatic ring has an electron-withdrawing substituent in a position ortho or para to the leaving group. The more such substituents there are, the faster the reaction. As shown in Figure 16.18, only ortho and para electron-withdrawing substituents stabilize the anion intermediate through resonance a meta substituent offers no such resonance stabilization. Thus, p-ch oronitrobenzene and o-chloronitrobenzene react with hydroxide ion at 130 °C to yield substitution products, but m-chloronitrobenzene is inert to OH-. [Pg.573]

As noted previously in Section 11.10, biological dehydrations are also common and usually occur by an ElcB mechanism on a substrate in which the -OH group is two carbons away from a carbonyl group. An example occurs in the biosynthesis of the aromatic amino acid tyrosine. A base first abstracts a proton from the carbon adjacent to the carbonyl group, and the anion intermediate... [Pg.621]

Protonation of the alkoxide anion intermediate gives the neutral alcohol addition product. [Pg.702]

The initial nitronate anion intermediates formed from the addition of trimethylaluminum to nitroalkenes having a /i-phenylthio substituent, however, undergo a highly diastereoselective protonation to give awn -products19. [Pg.1019]

Both (cis- and trans-) isomers rearrange stereospecifically to the cis-rearranged cyclopropane product (i.e. 257), the processes being apparently controlled by the same cis-anion intermediate (i.e. 256)... [Pg.453]

A particular case of a [3C+2S] cycloaddition is that described by Sierra et al. related to the tail-to-tail dimerisation of alkynylcarbenes by reaction of these complexes with C8K (potassium graphite) at low temperature and further acid hydrolysis [69] (Scheme 24). In fact, this process should be considered as a [3C+2C] cycloaddition as two molecules of the carbene complex are involved in the reaction. Remarkable features of this reaction are (i) the formation of radical anion complexes by one-electron transfer from the potassium to the carbene complex, (ii) the tail-to-tail dimerisation to form a biscarbene anion intermediate and finally (iii) the protonation with a strong acid to produce the... [Pg.77]

Alberda van Ekenstein rearrangement, generates the enediol anion intermediate that might undergo nonreversible degradation reactions. [Pg.451]


See other pages where Anions intermediates is mentioned: [Pg.219]    [Pg.87]    [Pg.977]    [Pg.979]    [Pg.981]    [Pg.981]    [Pg.987]    [Pg.466]    [Pg.977]    [Pg.979]    [Pg.979]    [Pg.981]    [Pg.981]    [Pg.987]    [Pg.230]    [Pg.117]    [Pg.164]    [Pg.73]    [Pg.222]    [Pg.393]    [Pg.574]    [Pg.10]    [Pg.46]    [Pg.66]    [Pg.741]    [Pg.247]    [Pg.52]    [Pg.63]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Intermediate anionic

© 2024 chempedia.info