Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic oxidative processes

One aspect that reflects the electronic configuration of fullerenes relates to the electrochemically induced reduction and oxidation processes in solution. In good agreement with the tlireefold degenerate LUMO, the redox chemistry of [60]fullerene, investigated primarily with cyclic voltammetry and Osteryoung square wave voltammetry, unravels six reversible, one-electron reduction steps with potentials that are equally separated from each other. The separation between any two successive reduction steps is -450 50 mV. The low reduction potential (only -0.44 V versus SCE) of the process, that corresponds to the generation of the rt-radical anion 131,109,110,111 and 1121, deserves special attention. [Pg.2418]

The analysis of oxidation processes to which diffusion control and interfacial equilibrium applied has been analysed by Wagner (1933) who used the Einstein mobility equation as a starting point. To describe the oxidation for example of nickel to the monoxide NiO, consideration must be given to tire respective fluxes of cations, anions and positive holes. These fluxes must be balanced to preserve local electroneutrality tliroughout the growing oxide. The flux equation for each species includes a term due to a chemical potential gradient plus a term due to the elecuic potential gradient... [Pg.260]

In an extension of this work, the Shibasaki group developed the novel transformation 48—>51 shown in Scheme 10.25c To rationalize this interesting structural change, it was proposed that oxidative addition of the vinyl triflate moiety in 48 to an asymmetric palladium ) catalyst generated under the indicated conditions affords the 16-electron Pd+ complex 49. Since the weakly bound triflate ligand can easily dissociate from the metal center, a silver salt is not needed. Insertion of the coordinated alkene into the vinyl C-Pd bond then affords a transitory 7t-allylpalladium complex 50 which is captured in a regio- and stereocontrolled fashion by acetate ion to give the optically active bicyclic diene 51 in 80% ee (89% yield). This catalytic asymmetric synthesis by a Heck cyclization/ anion capture process is the first of its kind. [Pg.576]

Impure plutonium oxide residues are dissolved in 12M HN03-0.1M HF under refluxing conditions, and then the plutonium is recovered and purified by anion exchange. Plutonium is leached from other residues, such as metal and glass, and is also purified by anion exchange. The purified plutonium eluate from the anion exchange process is precipitated with hydrogen peroxide. The plutonium peroxide is calcined to the oxide, and the plutonium oxide is fluorinated. The plutonium tetrafluoride is finally reduced to the metal with calcium. [Pg.349]

Iron(II) alkyl anions fFe(Por)R (R = Me, t-Bu) do not insert CO directly, but do upon one-electron oxidation to Fe(Por)R to give the acyl species Fe(Por)C(0)R, which can in turn be reduced to the iron(II) acyl Fe(Por)C(0)R]. This process competes with homolysis of Fe(Por)R, and the resulting iron(II) porphyrin is stabilized by formation of the carbonyl complex Fe(Por)(CO). Benzyl and phenyl iron(III) complexes do not insert CO, with the former undergoing decomposition and the latter forming a six-coordinate adduct, [Fe(Por)(Ph)(CO) upon reduction to iron(ll). The failure of Fe(Por)Ph to insert CO was attributed to the stronger Fe—C bond in the aryl complexes. The electrochemistry of the iron(lll) acyl complexes Fe(Por)C(0)R was investigated as part of this study, and showed two reversible reductions (to Fe(ll) and Fe(l) acyl complexes, formally) and one irreversible oxidation process."" ... [Pg.258]

The coordination of redox-active ligands such as 1,2-bis-dithiolates, to the M03Q7 cluster unit, results in oxidation-active complexes in sharp contrast with the electrochemical behavior found for the [Mo3S7Br6] di-anion for which no oxidation process is observed by cyclic voltammetry in acetonitrile within the allowed solvent window [38]. The oxidation potentials are easily accessible and this property can be used to obtain a new family of single-component molecular conductors as will be presented in the next section. Upon reduction, [M03S7 (dithiolate)3] type-11 complexes transform into [Mo3S4(dithiolate)3] type-I dianions, as represented in Eq. (7). [Pg.114]

Besides the numerous examples of anionic/anionic processes, anionic/pericydic domino reactions have become increasingly important and present the second largest group of anionically induced sequences. In contrast, there are only a few examples of anionic/radical, anionic/transition metal-mediated, as well as anionic/re-ductive or anionic/oxidative domino reactions. Anionic/photochemically induced and anionic/enzyme-mediated domino sequences have not been found in the literature during the past few decades. It should be noted that, as a consequence of our definition, anionic/cationic domino processes are not listed, as already stated for cationic/anionic domino processes. Thus, these reactions would require an oxidative and reductive step, respectively, which would be discussed under oxidative or reductive processes. [Pg.48]

Anionic/oxidative reaction sequences have been developed in addition to the domino anionic/reductive processes. For example, with regard to the synthesis of novel diaryl heterocycles as COX-2 inhibitors [500], including rofecoxib (Vioxx) 2-972 [501] (which has recently been withdrawn from the market) or the pyrrolin-2-one derivative 2-973 [494], Pal and coworkers reported on a so-far unique domino aldol condensation/oxidation sequence (Scheme 2.218) [503]. [Pg.197]

Oxidative or Reductive/Anionic/Anionic Domino Processes... [Pg.503]

Studies of cathodic reduction have been few. Amusingly, attempted anodic oxidation of the furyl ketone 123 actually resulted in cathodic reduction to the dimer 124 the corresponding ester was oxidized normally, however.301 Sometimes the dimethoxydihydrofurans formed in oxidation processes are reduced in a side reaction leading to the tetrahydrofuran derivatives.302 By using dimethylformamide as solvent instead of the protic solvents used formerly, a Czech group has demonstrated that the cathodic reductions of furans can produce fairly stable anion radicals having ESR spectra which agree well with theory.3023... [Pg.231]

At present, new developments challenge previous ideas concerning the role of nitric oxide in oxidative processes. The capacity of nitric oxide to oxidize substrates by a one-electron transfer mechanism was supported by the suggestion that its reduction potential is positive and relatively high. However, recent determinations based on the combination of quantum mechanical calculations, cyclic voltammetry, and chemical experiments suggest that °(NO/ NO-) = —0.8 0.2 V [56]. This new value of the NO reduction potential apparently denies the possibility for NO to react as a one-electron oxidant with biomolecules. However, it should be noted that such reactions are described in several studies. Thus, Sharpe and Cooper [57] showed that nitric oxide oxidized ferrocytochrome c to ferricytochrome c to form nitroxyl anion. These authors also proposed that the nitroxyl anion formed subsequently reacted with dioxygen, yielding peroxynitrite. If it is true, then Reactions (24) and (25) may represent a new pathway of peroxynitrite formation in mitochondria without the participation of superoxide. [Pg.698]

During oxide lead flotation, the choice of collector is rather limited to xanthates, which are used in operating plants. Dithiophosphates and mercaptans are used as secondary collectors. This is due to the fact that natural ores contain a variety of floatable gangues, for which the anionic flotation process is not applicable. The use of chelating agents as flotation collectors for oxide lead flotation have been extensively examined [5,6], Oximes/fuel oil... [Pg.71]


See other pages where Anionic oxidative processes is mentioned: [Pg.160]    [Pg.132]    [Pg.204]    [Pg.357]    [Pg.223]    [Pg.168]    [Pg.212]    [Pg.225]    [Pg.423]    [Pg.207]    [Pg.916]    [Pg.87]    [Pg.200]    [Pg.8]    [Pg.194]    [Pg.195]    [Pg.197]    [Pg.223]    [Pg.496]    [Pg.497]    [Pg.499]    [Pg.501]    [Pg.503]    [Pg.505]    [Pg.507]    [Pg.509]    [Pg.511]    [Pg.515]    [Pg.129]    [Pg.232]    [Pg.728]   
See also in sourсe #XX -- [ Pg.194 ]

See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Anion oxidation

Oxide anion

© 2024 chempedia.info