Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic Initiation Processes

The two principal anionic initiation processes are nucleophilic attack on the monomer and electron transfer. Nucleophilic attack is essentially addition of a negatively charged entity to the monomer and involves mainly alkali metal alkyls, living polymers, metal alkoxides, metal amides, and Grignard reagents. The general initiation process is... [Pg.305]

The two principal anionic initiation processes are (a) nucleophilic attack on the monomer which produces one-ended (raonofunctional) anions by addition of the initiator across the double bond of the monomer [see Eq. (8.5)] and (b) electron transfer by alkali metals that leads to two-ended (bifunctional) anions (see later). [Pg.660]

A protonic acid derived from a suitable or desired anion would seem to be an ideal initiator, especially if the desired end product is a poly(tetramethylene oxide) glycol. There are, however, a number of drawbacks. The protonated THF, ie, the secondary oxonium ion, is less reactive than the propagating tertiary oxonium ion. This results in a slow initiation process. Also, in the case of several of the readily available acids, eg, CF SO H, FSO H, HCIO4, and H2SO4, there is an ion—ester equiUbrium with the counterion, which further reduces the concentration of the much more reactive ionic species. The reaction is illustrated for CF SO counterion as follows ... [Pg.362]

The use of an unsaturated anionic initiator—such as potassium p-vinyl benzoxide—is possible for the ring opening polymerization of oxirane [43]. Although initiation is generally heterogenous, the polymers exhibit the molecular weight expected and a low polydispersity. In this case, the styrene type unsaturation at chain end cannot get involved in the process, as the propagating sites are oxanions. [Pg.729]

Leaving the (retro-)aldol addition-initiated threefold anionic domino processes, we are now describing sequences which are initiated by a SN-type transformation. In particular, domino reactions based on SN/1,4-Brook rearrangement/SN reactions are well known. For example, the group of Schaumann obtained functionalized cyclopentanols of type 2-461 by addition of lithiated silyldithioacetals 2-458 to epoxy-homoallyl tosylates 2-459 in 41-75% yield (Scheme 2.106) [248]. [Pg.120]

The following example completes the section of threefold anionic domino processes initiated by a SN-type reaction. As discussed earlier in Section 2.2, the reaction of a five-membered cyclic phosphonium ylide with enones, a, 3-unsaturated esters, and a, 3-unsaturated thioesters provides cycloheptene or hydroazulene derivatives in a domino Michael/intramolecular Wittig reaction. This sequence... [Pg.123]

The final group of threefold anionic domino processes described here includes transformations with an initiating elimination step which is either followed by two Michael additions or by substitutions. Thus, reaction of protected nitro alcohol 2-... [Pg.133]

Besides morefold anionic domino processes with one pericyclic reaction, domino sequences combining two initiating anionic with two pericyclic steps have also been developed. For example, the group of Nesi and Turchi reported on the synthe-... [Pg.149]

As expected, some sequences also occur where a domino anionic/pericyclic process is followed by another bond-forming reaction. An example of this is an anionic/per-icyclic/anionic sequence such as the domino iminium ion formation/aza-Cope/ imino aldol (Mannich) process, which has often been used in organic synthesis, especially to construct the pyrrolidine framework. The group of Brummond [450] has recently used this approach to synthesize the core structure 2-885 of the immunosuppressant FR 901483 (2-886) [451] (Scheme 2.197). The process is most likely initiated by the acid-catalyzed formation of the iminium ion 2-882. There follows an aza-Cope rearrangement to produce 2-883, which cyclizes under formation of the aldehyde 2-884. As this compound is rather unstable, it was transformed into the stable acetal 2-885. The proposed intermediate 2-880 is quite unusual as it does not obey Bredf s rule. Recently, this approach was used successfully for a formal total synthesis of FR 901483 2-886 [452]. [Pg.185]

First, we examined the efficiency of the initiation process. A solution of buthyllithium was added to a THF solution of 7 at -70°C. The color of the solution turned to red immediately and a strong ESR signal was observed with a well separated hyperfme structure. The observed radical species was identified as the anion radical of 2-butyl-l,l,2,2-tetramethyldisilanyl-substituted biphenyl by computational simulation as well as by comparison with the spectra of a model compound. The anion radical should be a product of a single electron transfer (SET) process from buthyllithium to the monomer. Since no polymeric product was obtained under the above-mentioned conditions, the SET process is an undesired side reaction of the initiation and one of the reasons why more higher molecular weight polymer was observed than expected. ... [Pg.289]

In order to avoid the SET process, we chose diphenylmethylsilyl anions (PI MeSiM 8a, M = K 8b, M = Na 8c, M = Li) as initiators for 7 instead of alkyllithium and benzene as a solvent. The polymerization did not take place in benzene with silyl anions alone. However, in the presence of an equimolar amount of suitable cryptands, the silyl anions initiated the polymerization. The results are summarized in Table 2. The molecular weights of polysilylenes thus obtained were in good agreement with the calculated values within experimental error. [Pg.289]

In this method, attack by an anionic initiator ( -BuLi, potassium alkoxides/cryptand[2.2.2],62 or silyl anions in benzene)63 occurs regioselectively on the less hindered silicon of 9, resulting in an anionically terminated disilanyl-lithium which then attacks another monomer at the less hindered silicon atom. The process continues rapidly (the reaction is usually complete within a few minutes) in a living polymerization fashion to yield 10 on alcohol workup. [Pg.561]

Relaxation studies have shown that the attachment of an ion to a surface is very fast, but the establishment of equilibrium in wel1-dispersed suspensions of colloidal particles is much slower. Adsorption of cations by hydrous oxides may approach equilibrium within a matter of minutes in some systems (39-40). However, cation and anion sorption processes often exhibit a rapid initial stage of adsorption that is followed by a much slower rate of uptake (24,41-43). Several studies of short-term isotopic exchange of phosphate ions between aqueous solutions and oxide surfaces have demonstrated that the kinetics of phosphate desorption are very slow (43-45). Numerous hypotheses have been suggested for this slow attainment of equilibrium including 1) the formation of binuclear complexes on the surface (44) 2) dynamic particle-particle interactions in which an adsorbing ion enhances contact adhesion between particles (43,45-46) 3) diffusion of ions into adsorbents (47) and 4) surface precipitation (48-50). [Pg.7]

Both CIDNP and ESR techniques were used to study the mechanism for the photoreduction of 4-cyano-l-nitrobenzene in 2-propanol5. Evidence was obtained for hydrogen abstractions by triplet excited nitrobenzene moieties and for the existence of ArNHO, Ai N( )211 and hydroxyl amines. Time-resolved ESR experiments have also been carried out to elucidate the initial process in the photochemical reduction of aromatic nitro compounds6. CIDEP (chemically induced dynamic electron polarization) effects were observed for nitrobenzene anion radicals in the presence of triethylamine and the triplet mechanism was confirmed. [Pg.750]

Unexpected uniformities observed in the impact-sensitivities of a group of 22 amminecobalt oxosalts are related to kinetic factors during the initiation process [6], A series of ammine derivatives of cadmium, cobalt, copper, mercury, nickel, platinum and zinc with (mainly) iodate anions was prepared and evaluated as explosives [7], Earlier, ammine and hydrazine derivatives of cadmium, cobalt, copper and nickel with chlorate or perchlorate anions had been evaluated as detonators. Dihydrazinecopper(II) chlorate had exploded when dried at ambient temperature [8],... [Pg.58]

Propagation with the anionic coordination initiators, especially the aluminum and zinc initiators such as aluminum isopropoxide or the metalloprophyrins such as VI, involves covalent propagation in which the epoxide monomer is inserted into a metal-oxygen bond [Penczek and Duda, 1993 Penczek et al., 1995 Szwarc and Van Beylen, 1993] (Eq. 7-9). The propagation is categorized as an anionic coordination process since one can visualize... [Pg.549]

The lactam anion reacts with monomer in the second step of the initiation process by a ring-opening transamidation to form the primary amine anion XXXV. Species XXXV, unlike... [Pg.574]

It has also been reported that treatment of the alkyl iodide 42 with activated zinc led to the spirobicyclic ketone 43. Due to the presence of an activated carbon—carbon bond, THF was a suitable solvent and kinetic studies strongly supported an anionic carbozincation process arising from an open-chain organozinc, although a small part of the cyclic product may derive from an initial radical pathway (equation 15)32. [Pg.872]

The volatility of difunctional isocyanates (such as tolylene diisocyanates, hexamethylene diisocyanate, etc.) creates many environmental problems in the urethane industry. These difficulties can be overcome by preparation of NCO-terminated oligomers with low vapor pressure. One approach is the preparation of NCO-ter-minated oligomers by partial cyclotrimerization of difunctional isocyanates. Usually this is achieved by a multi-step process which includes also deactivation of the catalyst at a certain conversion. During our work on cyclotrimerization of isocyanates we found that cyclic sulfonium zwitterions are very active cyclotrimerization catalysts (2). Recently we found that cyclic sulfonium zwitterions under certain reaction conditions act as anionic initiators. This behavior of cyclic sulfonium zwitterions permits preparation of isocyanate oligomers containing isocyanurate rings by a one-step procedure, eliminating the deactivation step. [Pg.502]


See other pages where Anionic Initiation Processes is mentioned: [Pg.83]    [Pg.153]    [Pg.541]    [Pg.83]    [Pg.153]    [Pg.541]    [Pg.237]    [Pg.237]    [Pg.517]    [Pg.541]    [Pg.1275]    [Pg.706]    [Pg.129]    [Pg.706]    [Pg.11]    [Pg.104]    [Pg.121]    [Pg.125]    [Pg.177]    [Pg.483]    [Pg.221]    [Pg.2]    [Pg.76]    [Pg.89]    [Pg.323]    [Pg.252]    [Pg.227]    [Pg.586]    [Pg.703]    [Pg.448]   


SEARCH



Anionic initiation

Anionic initiators

Anions initiating

Initial processing

Initiated Processes

Initiation process

Initiators anions

© 2024 chempedia.info