Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino Edman degradation

Edman degradation (Section 27 13) Method for determining the N terminal amino acid of a peptide or protein It in volves treating the material with phenyl isothiocyanate (CgH5N=C=S) cleaving with acid and then identifying the phenylthiohydantoin (PTH derivative) produced Elastomer (Section 10 11) A synthetic polymer that possesses elasticity... [Pg.1282]

FIGURE 27.12 Identification of the N-terminal amino acid of a peptide by Edman degradation. [Pg.1134]

Somatostatin is a tetradecapeptide of the hypothalamus that inhibits the release of pituitary growth hormone. Its amino acid sequence has been determined by a combination of Edman degradations and enzymic hydrolysis experiments. On the basis of the following data, deduce the primary structure of somatostatin ... [Pg.1154]

With the identities and amounts of amino acids known, the peptide is sequenced to find out in what order the amino acids are linked together. Much peptide sequencing is now done by mass spectrometry, using either electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) linked to a time-of-flight (TOF) mass analyzer, as described in Section 12.4. Also in common use is a chemical method of peptide sequencing called the Edman degradation. [Pg.1031]

The general idea of peptide sequencing by Edman degradation is to cleave one amino acid at a time from an end of the peptide chain. That terminal amino acid is then separated and identified, and the cleavage reactions are repeated on the chain-shortened peptide until the entire peptide sequence is known. Automated protein sequencers are available that allow as many as 50 repetitive sequencing cycles to be carried out before a buildup of unwanted by products interferes with the results. So efficient are these instruments that sequence information can be obtained from as little as 1 to 5 picomoles of sample—less than 0.1 /xg. [Pg.1031]

ATZ Derivative (Section 26.6) An anilinothiazolinone, formed from an amino acid during Edman degradation of a peptide. [Pg.1236]

Amino acid sequencing may be carried out in a number of ways. The most widely used is the Edman degradation procedure in which phenylisothiocyanate is used to react with the amino acid residue at the amine end of the protein chain. This derivatized residue is removed from the remainder of the protein and converted to a phenylhydantoin derivative which is identified by using, for example, HPLC. [Pg.206]

Edman degradation A method of amino acid sequencing in proteins in which successive V-terminal amino acids are removed from the polypeptide chain and identified. [Pg.305]

Underlined sequences indicate amino acid sequences used for the generation of degenerate primers. Bracketed question marks represent blank cycles from the Edman degradation reaction. Additional sequence was obtained after blank cycles in all cases except the Glu-C-1 and Glu-C-2 peptides. [Pg.252]

N-terminal sequencing is normally undertaken by Edman degradation (Figure 7.5). Although this technique was developed in the 1950s, advances in analytical methodologies now facilitate fast and automated determination of up to the first 100 amino acids from the N-terminus of most proteins, and usually requires a sample size of less than 1 umol to do so (Figure 7.6). [Pg.188]

Figure 7.5 The Edman degradation method, by which the sequence of a peptide/polypeptide may be elucidated. The peptide is incubated with phenylisothiocyanate, which reacts specifically with the N-terminal amino acid of the peptide. Addition of 6 mol l-1 HCl results in liberation of a phenylthiohydantoin-amino acid derivative and a shorter peptide, as shown. The phenylthiohydantoin derivative can then be isolated and its constituent amino acid identified by comparison to phenylthiohydantoin derivatives of standard amino acid solutions. The shorter peptide is then subjected to a second round of treatment, such that its new amino terminus may be identified. This procedure is repeated until the entire amino acid sequence of the peptide has been established... Figure 7.5 The Edman degradation method, by which the sequence of a peptide/polypeptide may be elucidated. The peptide is incubated with phenylisothiocyanate, which reacts specifically with the N-terminal amino acid of the peptide. Addition of 6 mol l-1 HCl results in liberation of a phenylthiohydantoin-amino acid derivative and a shorter peptide, as shown. The phenylthiohydantoin derivative can then be isolated and its constituent amino acid identified by comparison to phenylthiohydantoin derivatives of standard amino acid solutions. The shorter peptide is then subjected to a second round of treatment, such that its new amino terminus may be identified. This procedure is repeated until the entire amino acid sequence of the peptide has been established...
Edman Degradation. This technique requires more material than MS-based sequencing and its sensitivity decreases with the number of amino acids detected. The use of Edman degradation sometimes allows determination of those N-terminal amino acids that were not detected during MS sequencing. [Pg.206]

In 1950 an alternative to the Sanger procedure for identifying N-terminal amino acids was reported by Edman—reaction with phenyl-isothiocyanate to give a phenylthiocarbamide labeled peptide. When this was heated in anhydrous HC1 in nitromethane, phenylthiohy-dantoin was split off, releasing the free a-NH2 group of the amino acid in position 2 in the sequence. While initially the FDNB method was probably the more popular, the quantitative precision which could be obtained by the Edman degradation has been successfully adapted to the automatic analysis of peptides in sequenators. [Pg.177]

A number of ribosomal proteins contain modihed amino acids at the N terminus or at other positions of the protein chain (Table IV). The N termini of three proteins (S5, S18, and L7) are acetylated, thus they cannot be subjected successfully to manual or automatic Edman degradation because of their blocked N termini. Mutants have been isolated in... [Pg.5]

A more useful procedure, in that it allows sequential determination of the A-terminal amino acids in a peptide, is the Edman degradation. This process removes the A-terminal amino acid, but leaves the rest of the chain intact, so allowing further reactions to be applied. The reagent used here is phenyl isothiocyanate. [Pg.545]


See other pages where Amino Edman degradation is mentioned: [Pg.331]    [Pg.333]    [Pg.73]    [Pg.133]    [Pg.136]    [Pg.140]    [Pg.1031]    [Pg.1031]    [Pg.1049]    [Pg.1050]    [Pg.841]    [Pg.214]    [Pg.45]    [Pg.511]    [Pg.19]    [Pg.63]    [Pg.33]    [Pg.35]    [Pg.164]    [Pg.190]    [Pg.13]    [Pg.5]    [Pg.126]    [Pg.40]    [Pg.74]    [Pg.75]    [Pg.211]    [Pg.50]    [Pg.764]    [Pg.35]    [Pg.173]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Amino acid sequences Edman degradation

Amino degradation

Edman degradation

© 2024 chempedia.info