Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino asymmetric hydrogenation

Enzymatic hydrolysis of A/-acylamino acids by amino acylase and amino acid esters by Hpase or carboxy esterase (70) is one kind of kinetic resolution. Kinetic resolution is found in chemical synthesis such as by epoxidation of racemic allyl alcohol and asymmetric hydrogenation (71). New routes for amino acid manufacturing are anticipated. [Pg.279]

Asymmetric synthesis is a method for direct synthesis of optically active amino acids and finding efficient catalysts is a great target for researchers. Many exceUent reviews have been pubHshed (72). Asymmetric syntheses are classified as either enantioselective or diastereoselective reactions. Asymmetric hydrogenation has been appHed for practical manufacturing of l-DOPA and t-phenylalanine, but conventional methods have not been exceeded because of the short life of catalysts. An example of an enantio selective reaction, asymmetric hydrogenation of a-acetamidoacryHc acid derivatives, eg, Z-2-acetamidocinnamic acid [55065-02-6] (6), is shown below and in Table 4 (73). [Pg.279]

Butane, 2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)-catalyst in homogeneous asymmetric hydrogenation, 6, 781 Butane-1,4-dioic acid, 2,2-di(indolyl)-synthesis, 4, 226 Butanenitrile, 4-hydroxy-dihydropyran synthesis from, 3, 769 Butanoic acid, -y-aryl-y-amino-synthesis, 1, 433 1-Butanol... [Pg.572]

An early success story in the field of catalytic asymmetric synthesis is the Monsanto Process for the commercial synthesis of l-DOPA (4) (see Scheme 1), a rare amino acid that is effective in the treatment of Parkinson s disease.57 The Monsanto Process, the first commercialized catalytic asymmetric synthesis employing a chiral transition metal complex, was introduced by W. S. Knowles and coworkers and has been in operation since 1974. This large-scale process for the synthesis of l-DOPA (4) is based on catalytic asymmetric hydrogenation, and its development can be... [Pg.344]

In recent years, the catalytic asymmetric hydrogenation of a-acylamino acrylic or cinnamic acid derivatives has been widely investigated as a method for preparing chiral a-amino acids, and considerable efforts have been devoted for developing new chiral ligands and complexes to this end. In this context, simple chiral phosphinous amides as well as chiral bis(aminophosphanes) have found notorious applications as ligands in Rh(I) complexes, which have been used in the asymmetric hydrogenation of a-acylamino acrylic acid derivatives (Scheme 43). [Pg.99]

The reductive amination of ketones can be carried out under hydrogen pressure in the presence of palladium catalysts. However, if enantiopure Q -aminoketones are used, partial racemization of the intermediate a-amino imine can occur, owing to the equilibration with the corresponding enam-ine [102]. Asymmetric hydrogenation of racemic 2-amidocyclohexanones 218 with Raney nickel in ethanol gave a mixture of cis and trans 1,2-diamino cyclohexane derivatives 219 in unequal amounts, presumably because the enamines are intermediates, but with excellent enantioselectivity. The two diastereomers were easily separated and converted to the mono-protected cis- and trans- 1,2-diaminocyclohexanes 220. The receptor 221 has been also synthesized by this route [103] (Scheme 33). [Pg.39]

Pd metals immobilized on SBA-15 and NaY were applied as catalysts in the synthesis of amino alcohol. These catalysts afford a high level of enantioselectivity in the asymmetric hydrogenation of a-keto alcohol to corresponding amino alcohol. The large peilladium metal exhibited higher catalytic activity and enantioselectivity than well dispersed one over porous supports in the hydrogenation. [Pg.313]

Asymmetric Hydrogenation of an Amino Acid Intermediate in the Synthesis of Complex Drng Targets From Kinetic Modeling to Process... [Pg.27]

The pharmaceutical industry has been giving increased attention to homogeneous asymmetric hydrogenation for the synthesis of chiral molecules due to significant improvements in this technology (1). We recendy synthesized a chiral a-amino acid intermediate using Et-DuPhos-Rh catalyst, obtaining enantiomeric pmities (EP) of... [Pg.27]

The use of rhodium catalysts for the synthesis of a-amino acids by asymmetric hydrogenation of V-acyl dehydro amino acids, frequently in combination with the use of a biocatalyst to upgrade the enantioselectivity and cleave the acyl group which acts as a secondary binding site for the catalyst, has been well-documented. While DuPhos and BPE derived catalysts are suitable for a broad array of dehydroamino acid substrates, a particular challenge posed by a hydrogenation approach to 3,3-diphenylalanine is that the olefin substrate is tetra-substituted and therefore would be expected to have a much lower activity compared to substrates which have been previously examined. [Pg.73]

By using a mixture of ethyl acetate and D2O as solvent for hydrogenation, up to 75% deuterium is incorporated in the reduced product.13 This result indicates that the role of water here is not only as a solvent. Research on asymmetric hydrogenation in an aqueous medium is still actively being pursued. The method has been applied extensively in the synthesis of various amino acid derivatives.14... [Pg.315]

Oheme and co-workers investigated335 in an aqueous micellar system the asymmetric hydrogenation of a-amino acid precursors using optically active rhodium-phosphine complexes. Surfactants of different types significantly enhance both activity and enantioselectivity provided that the concentration of the surfactants is above the critical micelle concentration. The application of amphiphilized polymers and polymerized micelles as surfactants facilitates the phase separation after the reaction. Table 2 shows selected hydrogenation results with and without amphiphiles and with amphiphilized polymers for the reaction in Scheme 61.335... [Pg.119]

In situ rhodium(I) complexes containing both triphenylphosphine and optically active amines are said to effect asymmetric hydrogenation of the amino acid precursors (265). [Pg.350]

Excellent asymmetric hydrogenation of amino ketones has been applied for the syntheses of many chiral drugs. For example, the enantioselective hydrogenation of 3-aryloxy-2-oxo-l-propylamine derivatives can directly afford the l-amino-3-aryloxy-2-propanol derivatives as chiral / -adrenergic blocking agents. This has been successfully accomplished with a neutral MCCPM-Rh complex as the catalyst. With 0.01 mol.% of an (A,A)-MCCPM-Rh complex,... [Pg.45]

Scheme 10.2 Selection model of the Rh(l)-complex-catalyzed asymmetric hydrogenation to the (R)-amino acid derivative (according... Scheme 10.2 Selection model of the Rh(l)-complex-catalyzed asymmetric hydrogenation to the (R)-amino acid derivative (according...

See other pages where Amino asymmetric hydrogenation is mentioned: [Pg.47]    [Pg.74]    [Pg.345]    [Pg.345]    [Pg.151]    [Pg.206]    [Pg.118]    [Pg.8]    [Pg.246]    [Pg.116]    [Pg.119]    [Pg.313]    [Pg.248]    [Pg.28]    [Pg.73]    [Pg.210]    [Pg.519]    [Pg.84]    [Pg.111]    [Pg.117]    [Pg.350]    [Pg.388]    [Pg.4]    [Pg.13]    [Pg.21]    [Pg.22]    [Pg.23]    [Pg.29]    [Pg.30]    [Pg.31]    [Pg.44]    [Pg.45]    [Pg.50]    [Pg.61]   
See also in sourсe #XX -- [ Pg.320 ]




SEARCH



A-Amino acids asymmetric hydrogenation

A-amino acids asymmetrical hydrogenation

Amino acid precursors, asymmetric hydrogenation

Amino acid-derived catalysts asymmetric hydrogen transfer

Amino acids by asymmetric hydrogenation

Asymmetric transfer hydrogenation amino acid derivatives

Asymmetric transfer hydrogenation chiral amino alcohol ligand

© 2024 chempedia.info