Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids simple alkylation synthesis

Cinchona alkaloids, of course, have occupied the central position in the design of chiral PTCs. By employing a simple chemical transformation of the tertiary amine ofthe natural cinchona alkaloids to the corresponding quaternary ammonium salts, using active halides (e.g., aryl-methyl halides), a basic series of PTCs can be readily prepared. Cinchona alkaloid-derived PTCs have proved their real value in many types of catalytic asymmetric synthesis, including a-alkylation of modified a-amino acids for the synthesis of higher-ordered a-amino acids [2], a-alkylation of... [Pg.49]

Clerici and Porta reported that phenyl, acetyl and methyl radicals add to the Ca atom of the iminium ion, PhN+Me=CHMe, formed in situ by the titanium-catalyzed condensation of /V-methylanilinc with acetaldehyde to give PhNMeCHMePh, PhNMeCHMeAc, and PhNMeCHMe2 in 80% overall yield.83 Recently, Miyabe and co-workers studied the addition of various alkyl radicals to imine derivatives. Alkyl radicals generated from alkyl iodide and triethylborane were added to imine derivatives such as oxime ethers, hydrazones, and nitrones in an aqueous medium.84 The reaction also proceeds on solid support.85 A-sulfonylimines are also effective under such reaction conditions.86 Indium is also effective as the mediator (Eq. 11.49).87 A tandem radical addition-cyclization reaction of oxime ether and hydrazone was also developed (Eq. 11.50).88 Li and co-workers reported the synthesis of a-amino acid derivatives and amines via the addition of simple alkyl halides to imines and enamides mediated by zinc in water (Eq. 11.51).89 The zinc-mediated radical reaction of the hydrazone bearing a chiral camphorsultam provided the corresponding alkylated products with good diastereoselectivities that can be converted into enantiomerically pure a-amino acids (Eq. 11.52).90... [Pg.358]

Chiral sulfinimines 236 are very useful intermediates for the preparation of enantiomer-ically pure primary amines 237 (equation 158) . This reaction has been applied to the synthesis of a-amino acids . For sulfinimines obtained from simple ketones, lithium reagents are preferable for the addition , while for cyclic ketones organomagnesium compounds gave the best results. Addition of alkyl and aryl Grignard compounds to sulfinimines, derived from 3- and 4-substituted cyclohexanones, proceeds with excellent diastereoselectivity, depending on the stereochemistry of the ring substituents rather than the sulfinyl group . [Pg.575]

The facile asymmetric synthesis of a-amino acids usually inaccessible by enzymatic processes becomes feasible by employing appropriate electrophiles such as ortho-disubstituted benzyl bromides. In the reaction with simple alkyl halides such as ethyl iodide, the use of aqueous cesium hydroxide (CsOH) as a basic phase at a lower reaction temperature is generally recommended [7e]. [Pg.74]

Maruoka and coworkers also investigated the substantial reactivity enhancement of N-spiro chiral quaternary ammonium salt and simplification of its structure, the aim being to establish a truly practical method for the asymmetric synthesis of a-amino acids and their derivatives. As ultrasonic irradiation produces homogenization (i.e., very fine emulsions), it greatly increases the reactive interfacial area, which may in turn deliver a substantial rate acceleration in the liquid-liquid phase-transfer reactions. Indeed, sonication of the reaction mixture of 2, methyl iodide and (S,S)-lc (1 mol%) in toluene-50% KOH aqueous solution at 0 °C for 1 h gave rise to the corresponding alkylation product in 63% yield with 88% ee. Hence, the reaction was speeded up markedly, and the chemical yield and enantioselectivity were comparable with those of the reaction with simple stirring (0°C for 8h 64%, 90% ee) (Scheme 5.5) [10]. [Pg.74]

The enantioselective synthesis of a-amino acids employing easily available and reusable chiral catalysts or reagents presents clear advantages for large-scale applications. Accordingly, recyclable fluorous chiral phase-transfer catalyst 31 has been developed by the authors group, and its high chiral efficiency and reusability demonstrated in the asymmetric alkylation of 2. After the reaction, 31 could be easily recovered by simple extraction with FC-72 (perfluorohexanes) as a fluorous solvent and used for the next run, without any loss of reactivity and selectivity (Scheme 5.17) [23]. [Pg.87]

For example, N-(2-hydroxyphenyl)imines 9 (R = alkyl, aryl) together with chiral zirconium catalysts generated in situ from binaphthol derived ligands were used for the asymmetric synthesis of a-amino nitriles [17], the diastereo- and/or enantioselective synthesis of homoallylic amines [18], the enantioselective synthesis of simple //-amino acid derivatives [19], the diastereo- and enantioselective preparation of a-hydroxy-//-amino acid derivatives [20] or aminoalkyl butenolides (aminoalkylation of triisopropylsilyloxyfurans, a vinylogous variant of the Mannich reaction) [21]. A good example for the potential of the general approach is the diastereo- and enantioselective synthesis of (2R,3S)-3-phenylisoserine hydrochloride (10)... [Pg.136]

The simplest amino acid, glycine, would be an ideal starting material for the synthesis of more complicated amino acids but it does not easily form enols or enoiates. The methyl ester of the ben-zaldehyde imine has two electro n-withdra wing groups to help stabilization of the enolate and conjugate addition of acrylonitrile is now possible. The base used was solid potassium carbonate with a quaternary ammonium chloride as phase transfer catalyst. Simple hydrolysis of the alkylated product leads to the extended amino acid. [Pg.759]

Penney, C. L. Shah, P. Landi, S., A Simple Method for the Synthesis of Long-Chain Alkyl Esters of Amino Acids. J. Org. Chem. 1985, 50,1457. [Pg.110]


See other pages where Amino acids simple alkylation synthesis is mentioned: [Pg.189]    [Pg.225]    [Pg.243]    [Pg.189]    [Pg.189]    [Pg.43]    [Pg.200]    [Pg.201]    [Pg.15]    [Pg.215]    [Pg.219]    [Pg.221]    [Pg.340]    [Pg.858]    [Pg.873]    [Pg.829]    [Pg.207]    [Pg.21]    [Pg.519]    [Pg.382]    [Pg.125]    [Pg.475]    [Pg.858]    [Pg.873]    [Pg.182]    [Pg.216]    [Pg.197]    [Pg.16]    [Pg.227]    [Pg.201]    [Pg.10]    [Pg.152]    [Pg.338]    [Pg.338]    [Pg.1864]    [Pg.601]    [Pg.7003]   
See also in sourсe #XX -- [ Pg.1216 ]




SEARCH



5-Alkyl-2-amino

Alkyl synthesis

Amino acid alkylated

Amino acid alkylation

Amino acid alkylations

Amino alkylation

Simple amino acids

Synthesis alkylation

Synthesis amino acids

© 2024 chempedia.info