Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid metabolism arginine

Ans. Urea, an end product of amino acid metabolism, is formed by hydrolysis of the amino acid arginine. The enzyme responsible for the hydrolysis, arginase, contains a tightly bound Mn ion, critical for its activity. [Pg.491]

Heterocyclic enamines A -pyrroline and A -piperideine are the precursors of compounds containing the pyrrolidine or piperidine rings in the molecule. Such compounds and their N-methylated analogs are believed to originate from arginine and lysine (291) by metabolic conversion. Under cellular conditions the proper reaction with an active methylene compound proceeds via an aldehyde ammonia, which is in equilibrium with other possible tautomeric forms. It is necessary to admit the involvement of the corresponding a-ketoacid (12,292) instead of an enamine. The a-ketoacid constitutes an intermediate state in the degradation of an amino acid to an aldehyde. a-Ketoacids or suitably substituted aromatic compounds may function as components in active methylene reactions (Scheme 17). [Pg.295]

Certain amino acids and their derivatives, although not found in proteins, nonetheless are biochemically important. A few of the more notable examples are shown in Figure 4.5. y-Aminobutyric acid, or GABA, is produced by the decarboxylation of glutamic acid and is a potent neurotransmitter. Histamine, which is synthesized by decarboxylation of histidine, and serotonin, which is derived from tryptophan, similarly function as neurotransmitters and regulators. /3-Alanine is found in nature in the peptides carnosine and anserine and is a component of pantothenic acid (a vitamin), which is a part of coenzyme A. Epinephrine (also known as adrenaline), derived from tyrosine, is an important hormone. Penicillamine is a constituent of the penicillin antibiotics. Ornithine, betaine, homocysteine, and homoserine are important metabolic intermediates. Citrulline is the immediate precursor of arginine. [Pg.87]

The approach recruited to chemical proteomics in Reference [17] is called SILAC (stable isotope labeling with amino acids in cell culture) and is important in comparative proteomics (Figure 1). SILAC works well with cultured mammalian cells, but prokaryotes defeat it by metabolizing the label (usually supplied in lysine and arginine) into other amino acids. For applications beyond cultured eukaryotic cells, the reductive methylation route to differential labeling [18] is among the alternatives [15]-... [Pg.349]

Vitamin Ba (pyridoxine, pyridoxal, pyridoxamine) like nicotinic acid is a pyridine derivative. Its phosphorylated form is the coenzyme in enzymes that decarboxylate amino acids, e.g., tyrosine, arginine, glycine, glutamic acid, and dihydroxyphenylalanine. Vitamin B participates as coenzyme in various transaminations. It also functions in the conversion of tryptophan to nicotinic acid and amide. It is generally concerned with protein metabolism, e.g., the vitamin B8 requirement is increased in rats during increased protein intake. Vitamin B6 is also involved in the formation of unsaturated fatty acids. [Pg.212]

At least five amino acids - glutamine, glutamate, aspartate, asparagine and arginine - are metabolised largely within the enterocytes of the small intestine. The reactions involved in their metabolism are ... [Pg.168]

The anorexia suffered by cancer patients is likely to arise from a combination of psychological stress, altered senses of taste and smell and increased levels of cytokines, which influence the appetite and satiety centres in the hypothalamus. There are several consequences micronutrient intake will be diminished and this may contribute to the signs and symptoms of the disease. Plasma amino acid levels will fall, as in starvation (Chapter 16). Synthesis of glutamine (by muscle, adipose and lung), aspartate (by liver), glutathione (by the intestine) and arginine (by the kidney) will all be compromised. The metabolic significance of all of these is discussed in Chapter 18. [Pg.498]

The absence of influence on digestion and metabolism of nutrients of the food ration The digestion of food nutrients depends on their correlation in the ration. The use of the given amino acid, for example, arginin or taurin in the concentrations of treatment diminishes the digestion of other amino acids. [Pg.405]

Cleavage of fumarate from argininosuc-cinate leads to the proteinogenic amino acid arginine, which is synthesized in this way in animal metabolism. [Pg.182]

Ornithine is a metabolically quite active amino acid, and the important precursor of pyrrolidine nucleus, which is found in pyrrolizidine alkaloids. Ornithine itself is a non-protein amino acid formed mainly from L-glumate in plants, and synthesized from the urea cycle in animals as a result of the reaction catalyzed by enzymes in arginine. [Pg.73]

Figure 9-3. Fates of the carbon skeletons upon metabolism of the amino acids. Points of entry at various steps of the tricarboxylic acid (TCA) cycle, glycolysis and gluconeogenesis are shown for the carbons skeletons of the amino acids. Note the multiple fates of the glucogenic amino acids glycine (Gly), serine (Ser), and threonine (Thr) as well as the combined glucogenic and ketogenic amino acids phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr). Ala, alanine Cys, cysteine lie, isoleucine Leu, leucine Lys, lysine Asn, asparagine Asp, aspartate Arg, arginine His, histidine Glu, glutamate Gin, glutamine Pro, proline Val, valine Met, methionine. Figure 9-3. Fates of the carbon skeletons upon metabolism of the amino acids. Points of entry at various steps of the tricarboxylic acid (TCA) cycle, glycolysis and gluconeogenesis are shown for the carbons skeletons of the amino acids. Note the multiple fates of the glucogenic amino acids glycine (Gly), serine (Ser), and threonine (Thr) as well as the combined glucogenic and ketogenic amino acids phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr). Ala, alanine Cys, cysteine lie, isoleucine Leu, leucine Lys, lysine Asn, asparagine Asp, aspartate Arg, arginine His, histidine Glu, glutamate Gin, glutamine Pro, proline Val, valine Met, methionine.

See other pages where Amino acid metabolism arginine is mentioned: [Pg.318]    [Pg.100]    [Pg.134]    [Pg.272]    [Pg.253]    [Pg.214]    [Pg.434]    [Pg.5006]    [Pg.511]    [Pg.67]    [Pg.84]    [Pg.5005]    [Pg.92]    [Pg.457]    [Pg.309]    [Pg.705]    [Pg.8]    [Pg.59]    [Pg.15]    [Pg.366]    [Pg.196]    [Pg.245]    [Pg.367]    [Pg.76]    [Pg.163]    [Pg.274]    [Pg.1059]    [Pg.644]    [Pg.608]    [Pg.94]    [Pg.184]    [Pg.67]    [Pg.589]    [Pg.253]    [Pg.116]    [Pg.223]    [Pg.668]    [Pg.265]   
See also in sourсe #XX -- [ Pg.72 , Pg.73 ]




SEARCH



Amino acids arginine

Arginine acidity

Arginine metabolism

Argininic acid

© 2024 chempedia.info