Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid-derived catalysts ester derivatives

In 1990, Choudary [139] reported that titanium-pillared montmorillonites modified with tartrates are very selective solid catalysts for the Sharpless epoxidation, as well as for the oxidation of aromatic sulfides [140], Unfortunately, this research has not been reproduced by other authors. Therefore, a more classical strategy to modify different metal oxides with histidine was used by Moriguchi et al. [141], The catalyst showed a modest e.s. for the solvolysis of activated amino acid esters. Starting from these discoveries, Morihara et al. [142] created in 1993 the so-called molecular footprints on the surface of an Al-doped silica gel using an amino acid derivative as chiral template molecule. After removal of the template, the catalyst showed low but significant e.s. for the hydrolysis of a structurally related anhydride. On the same fines, Cativiela and coworkers [143] treated silica or alumina with diethylaluminum chloride and menthol. The resulting modified material catalyzed Diels-Alder reaction between cyclopentadiene and methacrolein with modest e.s. (30% e.e.). As mentioned in the Introduction, all these catalysts are not yet practically important but rather they demonstrate that amorphous metal oxides can be modified successfully. [Pg.500]

A new synthesis of cr-substituted and a,a-disubstituted a-amino acid derivatives based on the ammonium ylide formation/[2,3]-sigmatropic rearrangement has been recently reported by Clark s group.Decomposition of a-diazo -keto ester 153 was studied in detail with Rh2(OAc)4, Cu(acac)2, and Cu(hfacac)2 as the catalyst. Cu(acac)2 and Cu(hfacac)2 gave similar results, but Rh2(OAc)4 turned out less effective (Equation (23)). [Pg.169]

Protected glycine derivatives have been used as the nucleophilic partner in enantioselective syntheses of amino acid derivatives by chiral PTC (Scheme 10.9). Loupy and co-workers have reported the addition of diethyl acetylaminomalonate to chalcone without solvent with enan-tioselectivity up to 82% ee [44]. The recent report from the Corey group, with catalyst 8a used in conjunction with the benzophenone imine of glycine t-butyl ester 35, discussed earlier, results in highly enantioselective reactions (91-99% ee) with various Michael acceptors (2-cyclo-hexenone, methyl acrylate, and ethyl vinyl ketone) to yield products 71-73 [21], Other Michael reactions resulting in amino acid products are noted [45]. [Pg.741]

An ion-pair derived from the substrate and solid NaOH forms a cation-assisted dimeric hydrophobic complex with catalyst 39c, and the deprotonated substrate occupies the apical coordination site of one of the Cu(II) ions of the complexes. Alkylation proceeds preferentially on the re-face of the enolate to produce amino acid derivatives with high enantioselectivity. However, amino ester enolates derived from amino acids other than glycine and alanine with R1 side chains are likely to hinder the re-face of enolate, resulting in a diminishing reaction rate and enantioselectivity (Table 7.5). The salen-Cu(II) complex helps to transfer the ion-pair in organic solvents, and at the same time fixes the orientation of the coordinated carbanion in the transition state which, on alkylation, releases the catalyst to continue the cycle. [Pg.150]

Akiyama s group employed naturally occurring L-quebrachitol 6 to prepare the C2-symmetrical 18-membered chiral crown ether 7 [14]. Compound 7 was found to be an active catalyst for the enantioselective Michael additions of glycine enolates. Thus, deprotonation of ester 8 using potassium tert-butoxide in dichloromethane (DCM) in the presence of crown ether 7 (20 mol %), followed by addition of a Michael acceptor, gave amino-acid derivatives 9 with up to 96% ee, as shown in Scheme 8.4. [Pg.164]

One example is the optically active amino acid derivative (S)-20n which contains a bipyridyl substituent (Scheme 3.14). The alkylation reaction in the presence of the cinchona alkaloid catalyst 33 proceeds with 53% ee (83% yield of (S)-20n) and gave the desired enantiomerically pure a-amino acid ester (S)-20n in >99% ee after re-crystallization [43]. Subsequent hydrolysis of the optically pure (S)-20n furnished the desired unprotected a-amino acid 35. A different purification method, subsequent enzymatic resolution, reported by Bowler et al., furnished the a-amino acid product 35 with enantioselectivity of 95% ee [44],... [Pg.25]

Nevertheless, the use of chirally modified Lewis acids as catalysts for enantioselective aminoalkylation reactions proved to be an extraordinary fertile research area [3b-d, 16]. Meanwhile, numerous publications demonstrate their exceptional potential for the activation and chiral modification of Mannich reagents (generally imino compounds). In this way, not only HCN or its synthetic equivalents but also various other nucleophiles could be ami-noalkylated asymmetrically (e.g., trimethylsilyl enol ethers derived from esters or ketones, alkenes, allyltributylstannane, allyltrimethylsilanes, and ketones). This way efficient routes for the enantioselective synthesis of a variety of valuable synthetic building blocks were created (e.g., a-amino nitriles, a- or //-amino acid derivatives, homoallylic amines or //-amino ketones) [3b-d]. [Pg.136]

In 1992, O Donnell succeeded in obtaining optically active a-methyl-a-amino acid derivatives 49 in a catalytic manner through the phase-transfer alkylation of p-chlorobenzaldehyde imine of alanine tert-butyl ester 48 with cinchonine-derived la as catalyst (see Scheme 4.16) [46]. Although the enantioselectivities are moderate, this study is the first example of preparing optically active a,a-dialkyl-a-amino acids by chiral phase-transfer catalysis. [Pg.138]

Most of the experiments on incorporating amino acid esters into proteins during the plastein reaction have been carried out with papain, indicating that it is one of the best enzymes for this purpose. Other enzymes such as chymotrypsin (40) or carboxypeptidase Y from Sac-charomyces cerevisiae (41) are potent catalysts for peptide synthesis in homogeneous systems using N-acylamino acid esters of peptides as substrates and amino acid derivatives or peptides as nucleophile components. Adding organic co-solvents favored peptide bond synthesis (42,43). [Pg.153]

The synthesis of quaternary amino acids 86 have been shown using azlac-tones 85 as nucleophiles and the Trost ligand 39 under palladium [179] or molybdenum catalysis (Scheme 8) [180]. The allylic alkylation of glycine imino esters under biphasic conditions has also been achieved using a chiral phase-transfer catalyst in combination with an achiral Pd catalyst producing the unnatural amino acid derivatives [181]. [Pg.107]

This BINAP silver(I) complex was subsequently used by Lectka and coworkers as a catalyst for Mannich-type reactions [35]. Slow addition of silyl enol ether 49 to a solution of tosylated a-imino ester 80 under the influence of 10 mol % (i )-BINAP AgSbFg at -80 °C affords the corresponding amino acid derivative 81 in 95 % yield with 90 % ee (Sch. 20). They reported, however, that (R)-Tol-BINAP-CuC104-(CH3CN)2 was a more effective chiral Lewis acid for the reaction and gave the highest yield and ee at 0 °C. [Pg.585]

Enantioselection can be controlled much more effectively with the appropriate chiral copper, rhodium, and cobalt catalyst.The first major breakthrough in this area was achieved by copper complexes with chiral salicylaldimine ligands that were obtained from salicylaldehyde and amino alcohols derived from a-amino acids (Aratani catalysts ). With bulky diazo esters, both the diastereoselectivity (transicis ratio) and the enantioselectivity can be increased. These facts have been used, inter alia, for the diastereo- and enantioselective synthesis of chrysan-themic and permethrinic acids which are components of pyrethroid insecticides (Table 10). 0-Trimethylsilyl enols can also be cyclopropanated enantioselectively with alkyl diazoacetates in the presence of Aratani catalysts. In detailed studies,the influence of various parameters, such as metal ligands in the catalyst, catalyst concentration, solvent, and alkene structure, on the enantioselectivity has been recorded. Enantiomeric excesses of up to 88% were obtained with catalyst 7 (R = Bz = 2-MeOCgH4). [Pg.457]

The utihty of Cu(II)-box complex 96 for asymmetric Mukaiyama-Michael reaction has been intensively studied by Evans et al. (Scheme 10.91) ]248]. In the presence of HFIP fhe 96-catalyzed reaction of S-t-butyl thioacetate TMS enolate with alkylidene malonates provides fhe Michael adducts in high chemical and optical yield. HFIP plays a crucial role in inducing catalyst turnover. Slow addition of the silyl enolate to a solution of 96, alkylidene malonates, and HFIP is important in achieving high yields, because fhe enolate is susceptible to protonolysis with HFIP in fhe presence of 96. The glutarate ester products are readily decarboxylated to provide chiral 1,5-dicarbonyl synthons. Quite recenfly, Sibi et al. reported enantioselective synthesis of t -amino acid derivatives by Cu( 11)-box-catalyzed conjugate addition of silyl enolates to aminomefhylenemalonates ]249]. [Pg.472]

The final quadrant, the top right-hand, has to contain an electron withdrawing group. This group activates the carbon-carbon unsaturation. A wide variety of groups are tolerated including a carboxylic acid, ester, amide, nitrile, ketone, and aldehydes [7, 9]. This shows that the catalyst system can be used to prepare a wide range of amino acid derivatives without recourse to a number of transformations on the product unnatural amino acid. [Pg.261]


See other pages where Amino acid-derived catalysts ester derivatives is mentioned: [Pg.328]    [Pg.23]    [Pg.21]    [Pg.127]    [Pg.130]    [Pg.3]    [Pg.274]    [Pg.223]    [Pg.30]    [Pg.18]    [Pg.28]    [Pg.146]    [Pg.9]    [Pg.19]    [Pg.83]    [Pg.107]    [Pg.364]    [Pg.253]    [Pg.318]    [Pg.394]    [Pg.287]    [Pg.107]    [Pg.210]    [Pg.178]    [Pg.115]    [Pg.17]    [Pg.594]    [Pg.96]    [Pg.782]    [Pg.512]    [Pg.316]    [Pg.22]    [Pg.340]    [Pg.47]    [Pg.1043]    [Pg.18]    [Pg.38]   
See also in sourсe #XX -- [ Pg.975 ]




SEARCH



Amino acid derivatives

Amino acid ester

Amino acids deriv

Amino catalyst

Amino ester derivatives

Catalysts amino acid

Ester derivation

Ester derivatives

© 2024 chempedia.info