Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines chiral zirconium catalysts

Kobayashi and colleagues developed a catalytic enantioselective method for the allylation of imines 24 by substituted allylstannanes 25 with chiral zirconium catalysts 26 and 27 prepared from zirconium alkoxides and l,l -bi-2-naph-thol derivatives (Scheme 10) [19]. The allylation of aromatic imines 24 with 25 afforded the corresponding homoallylic amines 28 in good yields (71-85%) with high stereoselectivities (87-99% ee). [Pg.112]

The Stacker reaction has been employed on an industrial scale for the synthesis of racemic a-amino acids, and asymmetric variants are known. However, most of the reported catalytic asymmetric Stacker-type reactions are indirect and utilize preformed imines, usually prepared from aromatic aldehydes [24]. A review highlights the most important developments in this area [25]. Kobayashi and coworkers [26] discovered an efficient and highly enantioselective direct catalytic asymmetric Stacker reaction of aldehydes, amines, and hydrogen cyanide using a chiral zirconium catalyst prepared from 2 equivalents of Zr(Ot-Bu)4, 2 equivalents of (R)-6,6 -dibromo-1, l -bi-2-naphthol, (R)-6-Br-BINOL], 1 equivalent of (R)-3,3 -dibromo-l,l -bi-2-naphthol, [(R)-3-Br-BINOL, and 3 equivalents of N-methylimida-zole (Scheme 9.17). This protocol is effective for aromatic aldehydes as well as branched and unbranched aliphatic aldehydes. [Pg.286]

For example, N-(2-hydroxyphenyl)imines 9 (R = alkyl, aryl) together with chiral zirconium catalysts generated in situ from binaphthol derived ligands were used for the asymmetric synthesis of a-amino nitriles [17], the diastereo- and/or enantioselective synthesis of homoallylic amines [18], the enantioselective synthesis of simple //-amino acid derivatives [19], the diastereo- and enantioselective preparation of a-hydroxy-//-amino acid derivatives [20] or aminoalkyl butenolides (aminoalkylation of triisopropylsilyloxyfurans, a vinylogous variant of the Mannich reaction) [21]. A good example for the potential of the general approach is the diastereo- and enantioselective synthesis of (2R,3S)-3-phenylisoserine hydrochloride (10)... [Pg.136]

Ishitani, H., Komiyama, S., Hasegawa, Y., Kobayashi, S. Catalytic Asymmetric Strecker Synthesis. Preparation of Enantiomerically Pure a-Amino Acid Derivatives from Aidimines and Tributyitin Cyanide or Achirai Aidehydes, Amines, and Hydrogen Cyanide Using a Chiral Zirconium Catalyst. J. Am. Chem. Soc. 2000,122, 762-766. [Pg.690]

In the presence of a chiral zirconium " " or aluminum " catalyst, Bu3SnCN react with imines to give a-cyanoamines enantioselectively. The reaction of an imine and TMSCN gives the cyano amine with good enantioselectivity using a chiral scandium catalyst.Titanium catalysts have been used in the presence of a chiral Schiff base. Treatment of an imine with a chiral 1,4,6- triazabicy-clo[3.3.0]oct-4-ene and then HCN give the a-cyano amine with good enantioselectivity. [Pg.1392]

A variety of chiral, non-racemic zirconium complexes were explored in attempts to develop an enantioselective variant of this reaction (Scheme 3) [7-9]. Eor example, when allyUc amines lla,b were treated with EtMgCl and 10% of C2-symmetric BINOL-zirconium bis(tetrahydroindenyl)ethane (12, Brintzinger s catalyst [10], BINOL is l,l -binaphthalene 2,2 -dioate), chiral ethylated products 13a,b were obtained in 34-39% yield with enantiomeric excesses (ee) of ca. 26% [8]. Use of a (neomenthylindene)ZrCpCl2 catalyst 14, designed to improve the steric differentiation of the diastereomeric transition states, improved the chemical yields of amines at lower catalyst loadings (2-4%) and increased the ees of the reactions by a factor of three in the case of 11a [8,9]. Similar reactivity is observed in zirconocene dichloride-catalyzed cyclization of 1,6- and 1,7-enynes with 12.5% Cp2ZrCl2 using EtsAl as the stoichiometric reductant. For these substrates, the alkyne coordinates... [Pg.213]

Given the importance of chiral amines to synthetic chemistry as well as other fields asymmetric hydrogenation of imines has attracted wide interest but limited success compared to C=C and C=0 bond reduction. The first asymmetric hydrogenation of imines was carried out in the seventies with mthenium- and rhodium-based catalysts, followed later by titanium and zirconium systems [82]. Buchwald found that... [Pg.69]

Addition of organometallic reagents to imines is not limited to allylmetal derivatives. Hoveyda and Snapper have demonstrated that dialkylzinc reagents can add to imines in a one-pot procedure. Using a zirconium complex as metal catalyst and a chiral peptide, diverse enantioenriched aryl, aliphatic and alkynyl amines 142 have been obtained with high levels of enantioselectivity (Scheme 8.60) [136],... [Pg.260]


See other pages where Amines chiral zirconium catalysts is mentioned: [Pg.95]    [Pg.356]    [Pg.220]    [Pg.23]    [Pg.167]    [Pg.1349]    [Pg.621]    [Pg.255]    [Pg.1349]    [Pg.787]    [Pg.389]    [Pg.356]   
See also in sourсe #XX -- [ Pg.95 ]




SEARCH



Amination catalyst

Amines chirality

Catalysts amine

Chiral aminals

Chiral amines

Chiral catalysts

Zirconium amines

Zirconium catalyst

© 2024 chempedia.info