Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amination side reactions

Note that for 4.42, in which no intramolecular base catalysis is possible, the elimination side reaction is not observed. This result supports the mechanism suggested in Scheme 4.13. Moreover, at pH 2, where both amine groups of 4.44 are protonated, UV-vis measurements indicate that the elimination reaction is significantly retarded as compared to neutral conditions, where protonation is less extensive. Interestingy, addition of copper(II)nitrate also suppresses the elimination reaction to a significant extent. Unfortunately, elimination is still faster than the Diels-Alder reaction on the internal double bond of 4.44. [Pg.116]

Then N-Boc-O-benzylserine is coupled to the free amino group with DCC. This concludes one cycle (N° -deprotection, neutralization, coupling) in solid-phase synthesis. All three steps can be driven to very high total yields (< 99.5%) since excesses of Boc-amino acids and DCC (about fourfold) in CHjClj can be used and since side-reactions which lead to soluble products do not lower the yield of condensation product. One side-reaction in DCC-promoted condensations leads to N-acylated ureas. These products will remain in solution and not reaa with the polymer-bound amine. At the end of the reaction time, the polymer is filtered off and washed. The times consumed for 99% completion of condensation vary from 5 min for small amino acids to several hours for a bulky amino acid, e.g. Boc-Ile, with other bulky amino acids on a resin. A new cycle can begin without any workup problems (R.B. Merrifield, 1969 B.W. Erickson, 1976 M. Bodanszky, 1976). [Pg.232]

The synthesis described met some difficulties. D-Valyl-L-prolyl resin was found to undergo intramolecular aminoiysis during the coupling step with DCC. 70< o of the dipeptide was cleaved from the polymer, and the diketopiperazine of D-valyl-L-proline was excreted into solution. The reaction was catalyzed by small amounts of acetic acid and inhibited by a higher concentration (protonation of amine). This side-reaction can be suppressed by adding the DCC prior to the carboxyl component. In this way, the carboxyl component is "consumed immediately to form the DCC adduct and cannot catalyze the cyclization. [Pg.237]

Significant quantities of amine and amide esters are formed by side reactions (9). In addition, with dialkanolamines, amide diesters, morpholines, and piperazines can be obtained, depending on the starting material. Reaction of dialkanolamines with fatty acids in a 2 1 ratio, at 140—160°C, produces a second major type of alkanolamide. These products, in contrast to the 1 1 alkanolamides, are water soluble they are complex mixtures of AJ-alkanolamides, amine esters, and diesters, and still contain a considerable amount of unreacted dialkanolamine, accounting for the water solubiUty of the product. Both the 1 1 and the 2 1 alkanolamides are of commercial importance in detergents. [Pg.5]

These examples show that silane reacts selectively with the y-position of aHyl compounds. However, ia its reaction with aHyl amine, a side reaction ia which silane biads to the -position takes place (40). [Pg.76]

One characteristic of this reaction that can cause problems is that secondary and tertiary amines are produced in addition to the primary amine. It has been proposed that these side reactions occur through reaction of the imine iatermediate with the product amine, followed by the loss of ammonia and further hydrogenation (10). [Pg.258]

The tertiary amine is formed in a similar manner from the imine and a secondary amine. This side reaction can be minimized by carrying out the hydrogenation in the presence of ammonia, which tends to shift the equiHbrium back towards the imine. When a compound with two or more nitrile groups is hydrogenated, the formation of both cycHc and acycHc secondary and tertiary amines is possible, depending on whether the side reaction is intramolecular or intermolecular. For example, for the hydrogenation of adiponitfile ... [Pg.258]

Nitro groups in the pyridine ring are reduced to amines catalytically, but side reactions can occur with dithionite, leading to, e.g. (92) (75JOC3608). [Pg.213]

Isomerization of 3-cephems (27) to 2-cephems (28) takes place in the presence of organic bases (e.g. pyridine) and is most facile when the carboxyl is esterified. Normally an equilibrium mixture of 3 7 (3-cephem/2-cephem) is reached. Since the 2-cephem isomers are not active as antibacterial agents, the rearrangement proved to be an undesirable side reaction that complicated acylation of the C-7 amine under certain conditions. A method for converting such mixtures to the desired 3-cephem isomer involves oxidation with concomitant rearrangement to the 3-cephem sulfoxide followed by reduction. Additions... [Pg.291]

The carbamoyl chloride formed may then be decomposed more or less simultaneously with the intial phosgene-amine reaction to produce diisocyanate. A urea may be formed as the result of side reactions. [Pg.780]

Whilst reaction can take place in the absence of catalysts it is more common to use such materials as tetra-alkylammonium halides and tertiary amines such as triethylenediamine. A major side reaction leads to the production of isocyanurate rings, particularly in the presence of tertiary amines. [Pg.807]

Catalysts such as dibutyl tin dilaurate or tertiary amines are added to promote the urethane reaction and/or subsequent moisture cure. Dimorpholine diethyl ether is particularly effective at promoting moisture cure without promoting allophanate side reactions at the application temperature (which leads to instability in the hot melt pot) [29]. [Pg.733]

Open times of two-component urethanes can vary widely, depending on the level of catalyst. Reaction times can vary from 90 s to over 8 h. Dibutyltin dilaurate is the most common catalyst employed to catalyze the urethane reaction. This is normally added to the polyol side. A tertiary amine may also be added in small amounts. Tin catalysts do not catalyze the amine/isocyanate reaction very well. Acids, such as 2-ethyl hexanoic acid, may be employed to catalyze the amine/isocyanate reaction where needed. [Pg.796]

The treatment of ketoximes with lithium aluminum hydride is usually a facile method for the conversion of ketones into primary amines, although in certain cases secondary amine side products are also obtained. Application of this reaction to steroidal ketoximes, by using lithium aluminum deuteride and anhydrous ether as solvent, leads to epimeric mixtures of monodeuterated primary amines the ratio of the epimers depends on the position of the oxime function. An illustrative example is the preparation of the 3(x-dj- and 3j5-di-aminoandrostane epimers (113 and 114, R = H) in isotopic purities equal to that of the reagent. [Pg.178]

Generally, isolated olefinic bonds will not escape attack by these reagents. However, in certain cases where the rate of hydroxyl oxidation is relatively fast, as with allylic alcohols, an isolated double bond will survive. Thepresence of other nucleophilic centers in the molecule, such as primary and secondary amines, sulfides, enol ethers and activated aromatic systems, will generate undesirable side reactions, but aldehydes, esters, ethers, ketals and acetals are generally stable under neutral or basic conditions. Halogenation of the product ketone can become but is not always a problem when base is not included in the reaction mixture. The generated acid can promote formation of an enol which in turn may compete favorably with the alcohol for the oxidant. [Pg.233]

Due to side reactions and/or degradation, a variety of contaminants will begin to accumulate in an amine system. The method of removing these depends on the amine involved. [Pg.189]

The usual procedure is to simply heat a mixture of the starting materials. A common side-reaction is the polyalkylation it can be suppressed by employing an excess of amine. In addition carbonyl substrates with a-hydrogens may undergo competitive aldol reactions the corresponding reaction products may then undergo a subsequent Leuckart-Wallach reaction. [Pg.188]

Omission of the side chain methyl group also leads to an active analgesic, the potency of which is somewhat less than half that of the parent. Alkylation of the familiar nitrile with N (2-chioroethyl)dimethylamine gives the amine, 126. Reaction with... [Pg.80]

Alkylation lo yield a leriiary amine may occur easily if the formation involves cyclization (ii). Catalysts may have a marked influence. In reductive alkylation of ammonia wilh cyclohexanones, more primary amine was formed over Ru and Rh and more secondary amine over Pd and Pt. Reduction of the ketone to an alcohol is an important side reaction over ruthenium. [Pg.83]

Some workers avoid delay. Pai)adium-on-carbon was used effectively for the reductive amination of ethyl 2-oxo-4-phenyl butanoate with L-alanyl-L-proline in a synthesis of the antihyperlensive, enalapril maleate. SchifTs base formation and reduction were carried out in a single step as Schiff bases of a-amino acids and esters are known to be susceptible to racemization. To a solution of 4,54 g ethyl 2-oxO 4-phenylbutanoate and 1.86 g L-alanyl-L-proline was added 16 g 4A molecular sieve and 1.0 g 10% Pd-on-C The mixture was hydrogenated for 15 hr at room temperature and 40 psig H2. Excess a-keto ester was required as reduction to the a-hydroxy ester was a serious side reaction. The yield was 77% with a diastereomeric ratio of 62 38 (SSS RSS)((55). [Pg.85]

Transfer to monomer is of particular importance during the polymerization of allyl esters (113, X=()2CR), ethers (113, X=OR), amines (113, X=NR2) and related monomcrs.iw, 8, lb2 The allylic hydrogens of these monomers arc activated towards abstraction by both the double bond and the heteroatom substituent (Scheme 6.31). These groups lend stability to the radical formed (114) and are responsible for this radical adding monomer only slowly. This, in turn, increases the likelihood of side reactions (i.e. degradative chain transfer) and causes the allyl monomers to retard polymerization. [Pg.319]


See other pages where Amination side reactions is mentioned: [Pg.1411]    [Pg.1090]    [Pg.1607]    [Pg.1411]    [Pg.1090]    [Pg.1607]    [Pg.872]    [Pg.12]    [Pg.143]    [Pg.150]    [Pg.293]    [Pg.134]    [Pg.269]    [Pg.327]    [Pg.403]    [Pg.249]    [Pg.523]    [Pg.134]    [Pg.159]    [Pg.170]    [Pg.245]    [Pg.771]    [Pg.48]    [Pg.235]    [Pg.209]    [Pg.300]    [Pg.364]    [Pg.181]    [Pg.61]    [Pg.123]    [Pg.211]    [Pg.535]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Side reactions tertiary amine

© 2024 chempedia.info