Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amination reactions oxidative addition

Transition metal complex-catalyzed carbon-nitrogen bond formations have been developed as fundamentally important reactions. This chapter highlights the allylic amination and its asymmetric version as well as all other possible aminations such as crosscoupling reactions, oxidative addition-/3-elimination, and hydroamination, except for nitrene reactions. This chapter has been organized according to the different types of reactions and references to literature from 1993 to 2004 have been used. [Pg.695]

In a generahzed and simpHfied mechanism, the reaction usually follows the standard catalytic cycle of metal-catalyzed cross-coupling reactions oxidative addition of the C(sp ) -X bond to paUadium(O), followed by coordination of the amine to the resulting palladium complex, occurring with extrusion of HX that is captured by the base. Finally, reductive elimination yields the couphng product, regenerating the catalyticaUy active paUadium(O) species. [Pg.94]

Finally, late-metal-amido complexes have been prepared by the oxidative addition of amines. These oxidative additions are included in Chapter 7. In brief, the oxidative addition of aniline is favored for several different types of metals. This reaction of electron-poor pentafluoroaniline to Pt(0) was reported many years ago by Stone (Equation 4.7), and the reaction of the parent aniline with Ir(PEt3)3Cl was reported later by Casalnuovo and Mil-stein. More recently, the oxidative addition of ammonia to an iridium(I) complex containing an electron-rich pincer ligand was observed (Equation 4.8). ... [Pg.151]

The insertion of CO into Pd-carbon bonds has also been employed in several tandem/cascade reactions that afford five-membered nitrogen heterocycles [97]. A representative example of this approach to the construction of heterocydes involves synthesis of isoindolinones via the Pd-catalyzed coupling of 2-bromobenzaldehyde with two equivalents of a primary amine under an atmosphere of CO [97bj. As shown below (Eq. (1.57)), this method was used for the preparation of 144 in 64% yield. The mechanism of this reaction is likely via initial, reversible condensation of 2-bromobenzaldehyde with 2 equiv of the amine to form an aminal 145. Oxidative addition of the aryl bromide to Pd° followed by CO insertion provides the acylpalladium spedes 146, which is then captured by the pendant aminal to afford the observed product. An alternative mechanism involving intramolecular imine insertion into the Pd—C bond of a related acylpalladium species, followed by formation of a paUadium-amido complex and C—N bond-forming reductive elimination has also been proposed [97b],... [Pg.24]

The catalytic cycle consists of the following elemental reactions oxidative addition of an aryl halide to LPd(O), amine binding to the Pd(0) complex, deprotonation of the Pd-bound amine to furnish an arylpalladium-amide complex, and finally, reductive elimination (Scheme 13.2). [Pg.997]

The reactions are generally run at room temperature or below. With steroids the product is usually isolated by addition of the reaction mixture to water followed by filtration or extraction. The inorganic product of the reaction, chromium III, is soluble in neutral or aqueous acid solutions and can be removed by washing. When steroidal amines are oxidized, the work-up is usually modified such that the steroid may be extracted from the insoluble basic chromium III salts. °... [Pg.223]

According to the information available, it would be reasonable to consider that P. stipticus emits light when its natural luciferin is oxidized with molecular oxygen in the presence of OJ and a suitable surfactant (Shimomura et al., 1993b). Also, it seems almost certain that the natural luciferin is formed from PS-A, PS-B and a simple primary amine by the addition and condensation reactions. [Pg.289]

The three steps 32-34 have been suggested77 to be equilibria, and the overall equilibrium must lie far to the left because no adduct 23 is found in the reaction mixture when the reaction of sulfonyl chloride with olefin is carried out in the absence of a tertiary amine. A second possible mechanism involving oxidative addition of the arenesulfonyl halide to form a ruthenium(IV) complex and subsequent reductive elimination of the ruthenium complex hydrochloride, [HRulvCl], was considered to be much less likely. [Pg.1105]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

Although the oxidative addition of the N-H bond of NH3 and amines to transition metal complexes had been known for some time [140], it was only in the late 1980s that Milstein et al. succeeded in designing a homogeneously catalyzed hydroamina-tion reaction involving such an activation process (Eq. 4.27) [141]. [Pg.104]

Several studies were performed in order to establish the mechaiusm (5-7). The currently accepted mechartism, presented in Scheme 26.1 for the Pd(BINAP) catalyzed amination, involves the formation of a complex, Pd(BINAP)2 from a catalyst precursor (usually Pd(OAc)2 or Pd2(dba)3) and ligand this complex lies outside the catalytic cycle and undertakes dissociation of one BINAP to form Pd(BINAP) the following steps are the oxidative addition of the aryl halide to the Pd(BINAP), reaction with amine and base, and the reductive elimination of the product to reform Pd(BlNAP). [Pg.224]

There are a number of procedures for coupling of terminal alkynes with halides and sulfonates, a reaction that is known as the Sonogashira reaction.161 A combination of Pd(PPh3)4 and Cu(I) effects coupling of terminal alkynes with vinyl or aryl halides.162 The reaction can be carried out directly with the alkyne, using amines for deprotonation. The alkyne is presumably converted to the copper acetylide, and the halide reacts with Pd(0) by oxidative addition. Transfer of the acetylide group to Pd results in reductive elimination and formation of the observed product. [Pg.726]

A study of the reaction of chlorobenzene with /V-mclhyl aniline in the presence of Pd[P(r-Bu)3]2 and several different bases indicated that two mechanisms may occur concurrently, with their relative importance depending on the base, as indicated in the catalytic cycle below. The cycle on the right depicts oxidative addition followed by ligation by the deprotonated amine. The cycle on the left suggests that oxidative addition occurs on an anionic adduct of the catalyst and the base, followed by exchange with the amine ligand.167... [Pg.1047]

In addition, complexes of P(/-Bu)3 have been shown to catalyze the formation of diaryl heteroarylamines from bromothiophenes.224 Aminations of five-membered heterocyclic halides such as furans and thiophenes are limited because their electron-rich character makes oxidative addition of the heteroaryl halide and reductive elimination of amine slower than it is for simple aryl halides. Reactions of diarylamines with 3-bromothiophenes occurred in higher yields than did reactions of 2-bromothiophene, but reactions of substituted bromothiophenes occurred in more variable yields. The yields for reactions of these substrates in the presence of catalysts bearing P(/-Bu)3 as ligand were much higher than those in the presence of catalysts ligated by arylphosphines. [Pg.375]

The synergistic action of a phenol and aromatic amine mixture on hydrocarbon oxidation was found by Karpukhina et al. [16]. A synergistic effect of binary mixtures of some phenols and aromatic amines in oxidizing hydrocarbon is related to the interaction of inhibitors and their radicals [16-26]. In the case of a combined addition of phenyl-A-2-naphthylamine and 2,6-bis(l,l-dimethylethyl)phenol to oxidizing ethylbenzene (v, = const, 343 K), the consumption of amine begins only after the phenol has been exhausted [16], in spite of the fact that peroxyl radicals interact with amine more rapidly than with phenol (7c7 (amine) = 1.3 x 105 and /c7 (phenol) = 1.3 x 104 L mol 1 s respectively 333 K). This phenomenon can be explained in terms of the fast equilibrium reaction [27-30] ... [Pg.623]

In addition to peroxyl radicals and hydroperoxide, amines are oxidized by dioxygen and this reaction was found to be catalyzed by the copper surface also. This reaction was studied in chlorobenzene and occurs with the rate ... [Pg.689]

Hence, the copper surface catalyzes the following reactions (a) decomposition of hydroperoxide to free radicals, (b) generation of free radicals by dioxygen, (c) reaction of hydroperoxide with amine, and (d) heterogeneous reaction of dioxygen with amine with free radical formation. All these reactions occur homolytically [13]. The products of amines oxidation additionally retard the oxidation of hydrocarbons after induction period. The kinetic characteristics of these reactions (T-6, T = 398 K, [13]) are presented below. [Pg.689]

The 2,3-substituted indols are formed via a palladium-catalyzed coupling reaction of aryl halide, o-alkenylphenyl isocyanide, and amine (Equation (122)).481 Oxidative addition of an aryl halide, insertion of both the isonitrile and alkene moieties of o-alkenylphenyl isocyanide, and 1,3-hydrogen migration may form a 7r-allylpalladium species, which is then attacked by an amine to afford an indol. [Pg.470]


See other pages where Amination reactions oxidative addition is mentioned: [Pg.260]    [Pg.303]    [Pg.49]    [Pg.47]    [Pg.8]    [Pg.37]    [Pg.508]    [Pg.127]    [Pg.314]    [Pg.288]    [Pg.159]    [Pg.109]    [Pg.488]    [Pg.84]    [Pg.38]    [Pg.225]    [Pg.716]    [Pg.134]    [Pg.173]    [Pg.177]    [Pg.171]    [Pg.191]    [Pg.391]    [Pg.82]    [Pg.135]    [Pg.49]    [Pg.171]    [Pg.456]    [Pg.705]    [Pg.711]   
See also in sourсe #XX -- [ Pg.1082 , Pg.1083 ]




SEARCH



Addition-oxidation reactions

Additives, 423 Amines

Amines addition reactions

Amines oxidative addition

Amines oxidative reactions

Oxidation oxidative addition reaction

Oxidative Addition Reactions of Primary Amines with Isocyanides

Oxidative addition aryl halides, amination reactions

Oxidative addition reactions

Oxidative amination reactions

© 2024 chempedia.info