Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amination reactions enamine catalysis

Diels-Alder Reactions The organocatalytic Diels-Alder reaction of a,P-unsaturated carbonyl compounds can be performed either via iminium (see Section 11.3) or enamine catalysis. The first highly selective enamine-promoted cycloaddition reaction was reported by Jprgensen and coworkers, who developed an amine-catalyzed inverse-electron-demand hetero-Diels-Alder (HDA) reaction (Scheme ll.lOa). ... [Pg.329]

Abstract The reversible reaction of primary or secondary amines with enolizable aldehydes or ketones affords nncleophilic intermediates, enamines. With chiral amines, catalytic enantioselective reactions via enamine intermediates become possible. In this review, structure-activity relationships and the scope as well as cnrrent limitations of enamine catalysis are discnssed. [Pg.29]

This catalytic enamine formation is limited to aldehydes and ketones as starting materials - it does not appear to be possible to prepare corresponding enamines , i.e. A,0-ketene acetals, from esters in this fashion. Nevertheless, the preparation of simple, reactive nucleophiles from normally electrophilic species, aldehydes and ketones, in a catalytic fashion sounds highly attfactive. Furthermore, the catalytic nature of these reactions allows the use of chiral amines, and the further possibility that these reactions can be rendered enantioselective. Enamines react readily with a wide variety of electrophiles, and the range of reactions that can be catalyzed by enamine catalysis is summarized in Scheme 2. [Pg.30]

One of the landmark achievements in the area of enantioselective catalysis has been the development of a large-scale commercial application of the Rh(I)/BINAP-catalyzed asymmetric isomerization of allylic amines to enamines. Unfortunately, methods for the isomerization of other families of olefins have not yet reached a comparable level of sophistication. However, since the early 1990s promising catalyst systems have been described for enantioselective isomerizations of allylic alcohols and aUylic ethers. In view of the utility of catalytic asymmetric olefin isomerization reactions, I have no doubt that the coming years will witness additional exciting progress in the development of highly effective catalysts for these and related substrates. [Pg.85]

Recently, List has described a cascade reaction promoted by phosphoric acid 1 in combination with stoichiometric amounts of achiral amine, which transforms various 2,6-diketones to the corresponding ds-cyclohexylamines (Scheme 5.28) [50]. This three-step process involves initial aldolization via enamine catalysis to give conjugate iminium ion intermediate A. Next, asymmetric conjugate reduction followed by a diastereoselective 1,2 hydride addition completes the catalytic cycle. [Pg.91]

Enamine catalysis often delivers valuable chiral compounds such as alcohols, amines, aldehydes, and ketones. Many of these are normally not accessible using established reactions based on transition metal catalysts or on preformed enolates or enamines, illustrating the complimentary nature of organocatalysis and metallocatalysis. [Pg.10]

Chen and coworkers have reported a new domino Michael-Michael addition reaction between a,a-dicyanoalkene [26] derived from cyclohexanone and benzyli-deneacetone, resulting in a stepwise [4 + 2]-type cycloaddition to afford almost enantiopure bicyclic adduct 15. In contrast to the completely inert function of secondary ammonium salt, a primary amine, 9-amino-9-deoxyepiquinine lo [27], in combination with trifluoroacetic acid, was found to be highly efficient in the activation of the a, 3-unsaturated ketone by tandem iminium-enamine catalysis (Scheme 10.21) [28],... [Pg.313]

A variety of a,a-dicyanoalkenes derived from aryl ketones have also been extensively explored under the same catalytic conditions, and in general the vinylogous Michael adducts were obtained due to the steric hindrance in the following enamine catalysis by primary amine lo [28]. Nevertheless, an interesting domino Michael-Michael-retro-Michael reaction was observed for a,a-dicyanoalkenes derived from acetophenone and propiophenone, giving a facile process to chiral 2-cyclohexen-l-one derivatives. It was noteworthy that a kinetic resolution was observed in the intramolecular Michael addition step (Scheme 10.22). [Pg.313]

One of the most studied processes is the direct intermolecular asymmetric aldol condensation catalysed by proline and primary amines, which generally uses DMSO as solvent. The same reaction has been demonstrated to also occur using mechanochemical techniques, under solvent-free ball-milling conditions. This chemistry is generally referred to as enamine catalysis , since the electrophilic substitution reactions in the a-position of carbonyl compounds occur via enamine intermediates, as outlined in the catalytic cycle shown in Scheme 1.1. A ketone or an a-branched aldehyde, the donor carbonyl compound, is the enamine precursor and an aromatic aldehyde, the acceptor carbonyl compound, acts as the electrophile. Scheme 1.1 shows the TS for the ratedetermining enamine addition step, which is critical for the achievement of enantiocontrol, as calculated by Houk. ... [Pg.8]

With respect to the covalent activation in conjugate additions, the catalyst, usually a primary or a secondary amine, can reversibly form a chiral enamine [ 11 ] to activate the nucleophile (D, Fig. 2.2) or a chiral iminium ion [12] to activate the acceptor (E, Fig. 2.2). The detection of enamine intermediates in asymmetric oiganocatalysis has been for a long time the missing piece of evidence for the commonly accepted mechanism of enamine catalysis. This gap has been recently solved with the first detection and structnral characterization of enamine intermediates in proUne-cata-lyzed aldol reactions by real-time NMR spectroscopy [13] and the direct observation of an enamine intermediate in the crystal strnctnre of an aldolase antibody [14]. [Pg.43]

The mechanism of enamine catalysis has been established the enamine is the active form of nucleophile. Other modes of activation are less developed and are limited to a certain group of donors and acceptors. Quinidine was found to catalyze the reaction of hydroxyacetone with aldehydes to yield the desired 5y -aldols with moderate diastereoselectivity and low enantioselectivity [169]. This represents the first example of a tertiary amine catalyzing the direct aldol reaction. Even (3, y-unsaturated a-keto ester 154 was successfidly coupled with protected hydroxyacetone 51 in the presence of 20 mol% of 9-amino-9-deoxy-cpi-cinchonine 155 and a small amount of TEA (Scheme 3.27). [Pg.117]

A plausible mechanism for the reaction is shown in Scheme 11.2. The carbonyl group undergoes two a-amino-methylation reactions on the same a-carbon of the ketone 12, which is catalyzed by L-proline through enamine catalysis. The cyclocondensation of the resulting substituted amines 19 with formaldehyde affords the desired spiro[indoline-3, 5 -pyrimidin]-2-one and spiro[indene-2,5 -pyrimidin]-l (3H)-one (Scheme 11.2). [Pg.359]

These findings were extended to a set of very useful cascade reactions by the MacMiUan group [111]. In a first series 1,4-hydride additions were combined with aminations, oxidations, or Mannich reactions (Scheme 4.30). The hydride transfer was catalyzed by imidazoHdinone 9, whereas subsequent functionalization was realized by enamine catalysis through the deployment of proline. Depending on the chirality of proline used, optically pure anti- or syu-configured products 84-86 were isolated. [Pg.88]

A wide range of small organic molecules, mainly secondary amines such as proline derivatives, promote asymmetric aldol reactions through enamine catalysis [6]. List, Reymond, Gong, and others reported the first examples of peptidic catalysts for aldol reactions [7]. In their report, Reymond and coworkers [7a] developed two classes of peptides, following two different designs. In the first peptide class a primary amine is present as a side chain residue (similar to the natural type I aldolase) or as free N-terminus in the second a secondary amine or a proHne residue is present at the N-terminus of the peptide, which incorporated at least one free carboxyhc function (Figure 5.3). [Pg.99]

Examples of high-pressure organocatalytic reactions published after 2002 showed that the attention of researchers has switched to other catalytic systems that are well known as being very efficient in selected reactions under classical conditions (e.g., proHne and other secondary amines as well as primary amines and thioureas). The influence of pressure on the asymmetric enamine catalysis... [Pg.585]


See other pages where Amination reactions enamine catalysis is mentioned: [Pg.52]    [Pg.52]    [Pg.283]    [Pg.560]    [Pg.20]    [Pg.9]    [Pg.712]    [Pg.72]    [Pg.712]    [Pg.402]    [Pg.404]    [Pg.136]    [Pg.142]    [Pg.159]    [Pg.168]    [Pg.181]    [Pg.12]    [Pg.315]    [Pg.61]    [Pg.15]    [Pg.36]    [Pg.130]    [Pg.2237]    [Pg.1222]    [Pg.26]    [Pg.31]    [Pg.161]    [Pg.492]    [Pg.741]    [Pg.745]   
See also in sourсe #XX -- [ Pg.382 , Pg.383 , Pg.384 , Pg.385 , Pg.386 , Pg.387 , Pg.388 , Pg.389 ]




SEARCH



Amination reactions catalysis

Amines catalysis

Enamine catalysis reactions

Enamine reaction

© 2024 chempedia.info