Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum oxidation number

These are made of boron carbide ia a matrix of aluminum oxide clad with Zircaloy. As the uranium is depleted, ie, burned up, the boron is also burned up to maintain the chain reaction. This is another intrinsic control feature. The chemical shim and burnable poison controls reduce the number of control rods needed and provide more uniform power distributions. [Pg.240]

Starting with a ceramic and depositing an aluminum oxide coating. The aluminum oxide makes the ceramic, which is fairly smooth, have a number of bumps. On those bumps a noble metal catalyst, such as platinum, palladium, or rubidium, is deposited. The active site, wherever the noble metal is deposited, is where the conversion will actually take place. An alternate to the ceramic substrate is a metallic substrate. In this process, the aluminum oxide is deposited on the metallic substrate to give the wavy contour. The precious metal is then deposited onto the aluminum oxide. Both forms of catalyst are called monoliths. [Pg.480]

The oxidation number of an element in a monatomic ion is equal to the charge of that ion. In the ionic compound NaCl, sodium has an oxidation number of +1, chlorine an oxidation number of — 1. The oxidation numbers of aluminum and oxygen in A1203 (Al3+, O2- ions) are +3 and —2, respectively. [Pg.87]

Historically, the first capacitors using an electrocfiemical system were the electrolytic capacitors. Built like film capacitors, they have electrodes made of aluminum foil on which by electrochemical oxidation a thin film of aluminum oxide (i.e., 10 to lOOnm thick) is grown to serve as the dielectric. Solutions are used as the electrolyte which aid self-repair of the oxide film on aluminum after accidental damage. Such electrolytes are solutions of salts of a number of orgaiuc acids (trifluoroacetic, salicylic, and some others). Because of the small thickness of the oxide layer, electrolytic capacitors have a markedly higher capacity than film capacitors. They can thus be used in the microfarad range. [Pg.371]

Fired ceramic spheroids have been described for use as a well proppant [1051], Each spheroid has a core made from raw materials comprising mineral particulates, silicium carbide, and a binder. The mixture includes a mineral with chemically bound water or sulfur, which blows the mixture during firing. Therefore the core has a number of closed air cells. Each spheroid has an outer shell surrounding the core, comprising a metal oxide selected from aluminum oxide and magnesium oxide. The fired ceramic spheroids have a fired density less than 2.2 g/cm. ... [Pg.269]

The total number of electrons lost must equal the total number of electrons gained. The reaction of aluminum with oxygen produces aluminum oxide. The aluminum has three valence electrons to lose. The oxygen has six valence electrons and needs two. The lowest common factor between 3 and 2 is 6. It requires two aluminum atoms, losing three electrons each, to supply six electrons. It will require three oxygen atoms, gaining two electrons each, to account for the six electrons. The resultant compound, aluminum oxide, has the formula A1203. All ions present have an octet of electrons. [Pg.132]

The metallic properties increase down any column and towards the left in any row on the periodic table. One important metallic property is that metal oxides are base anhydrides. A base anhydride will produce a base in water. These are not oxidation-reduction reactions. Many metal oxides are too insoluble for them to produce any significant amount of base. However, most metal oxides, even those that are not soluble in water, will behave as bases to acids. A few metal oxides, and their hydroxides, are amphoteric. Amphoteric means they may behave either as a base or as an acid. Amphoterism is important for aluminum, beryllium, and zinc. Complications occur whenever the oxidation number of the metal exceeds +4 as in the oxides that tend to be acidic. [Pg.284]

This section will focus on homonuclear neutral or anionic clusters of the elements aluminum, gallium, indium, and thallium, which have an equal number of cluster atoms and substituents. Thus, they may clearly be distinguished from the metalloid clusters described below, which in some cases have structures closely related to the allotropes of the elements and in which the number of the cluster atoms exceeds the number of substituents. The compounds described here possess only a single non-centered shell of metal atoms. With few exceptions, their structures resemble those of the well-known deltahedral boron compounds such as B4(CMe3)4 [30], B9CI9 [31] or [B H ]2 [32]. The oxidation numbers of the elements in these... [Pg.129]

The ratio of the oxide formed to the metal consumed is called the Piling and Bedworth number. When the number is over 1, the metal rusts. Aluminum and magnesium are the best examples of metals that do not rust because a protective oxide coat forms that is, they have a Piling to Bedworth number of 1. Scratch an aluminum ladder and notice a bright fissure forms and quickly self-coats. The heat release in the sealing aluminum oxide is dissipated to the ladder structure. [Pg.404]

One of the most important electrolytic processes is the extraction of aluminum from an ore called bauxite. This ore is mainly composed of hydrated aluminum oxide, AI2O3 XH2O. (The x in the formula indicates that the number of water molecules per formula unit is variable.) In industry, the scale of production of metals is huge. The electrolytic production of aluminum is over two million tonnes per year in Canada alone. As you know from Faraday s law, the amount of a metal produced by electrolysis is directly proportional to the quantity of electricity used. Therefore, the industrial extraction of aluminum and other metals by electrolysis requires vast quantities of electricity. The availability and cost of electricity greatly influence the location of industrial plants. [Pg.544]

A number of reagents containing oxide components are used in zeolite manufacture [19]. Silica is provided by addihon of sodium or other alkali silicate solutions, precipitated, colloidal, or fumed silica, or tetraalkylorthosihcate (alkyl = methyl, ethyl) and certain mineral silicates such as clays and kaolin. Alumina is provided as sodium aluminate, aluminum sulfate soluhon, hydrous aluminum oxides such as pseudo boehmite, aluminum nitrate, or aluminum alkoxides. Additional alkali is added as hydroxide or as halide salts, while organic amines and/or... [Pg.63]

F NMR of Fluorine-Doped -Alumina. The samples studied 115) were high surface area aluminum oxides doped with fluorine by addition of aqueous HF to alumina and subsequent dehydration. A suflScient number of paramagnetic impurities were present in the samples to give relaxation times of the order of 0.01 second. The BET surface areas of most of the samples examined were within 20% of 250 meterVgram. [Pg.66]

The AI-H2O reaction increases the temperature and the number of moles of gas in the bubble by the production of H2 molecules. The pressure in the bubble is thereby increased. As a result, the bubble energy and shock wave energy are increased. It must be understood that the oxidation of aluminum powder is not like that of gaseous reactants. Reaction occurs at the surface of each aluminum particle and leads to the formahon of an aluminum oxide layer that coats the particle. The oxidized layer prevents the oxidation of the interior particle. The combustion efficiency of aluminum parhcles increases with decreasing particle size.l =l The shock wave energy and bubble energy are increased by the use of nano-sized aluminum powders. [Pg.271]

If the aluminum oxide is a stoichiometric compound with whole-number ratios of the constituent elements, the preceding quotient must be translated into a ratio of integers ... [Pg.22]

The catalytic activity of aluminas are mostly related to the Lewis acidity of a small number of low coordination surface aluminum ions, as well as to the high ionicity of the surface Al-O bond [67,92]. The number of such very strong Lewis sites present on aluminum oxide surfaces depends on the dehydroxylation degree and on the particular phase and preparation. Depending on the activation temperature, the density of the strongest Lewis acid sites tends to decrease as the calcination temperature of the alumina increases (i.e., upon the sequence y — 5 —> 9, which is also a sequence of decreasing surface area and increasing catalyst stability). [Pg.206]

A method for the commercial production of acetylene was discovered accidentally in 1892 by Thomas Willson (1860-1915). Willson was experimenting on aluminum production at his company in Spray, North Carolina. He was attempting to produce calcium in order to reduce aluminum in aluminum oxide, A1203. Willson combined coal tar and quicklime in an electric furnace and, instead of producing metallic calcium, he produced a brittle gray substance. The substance was calcium carbide, CaC2, which when reacted with water, produced acetylene. Willsons work led to the establishment of a number of acetylene plants in the United States and Europe during the next decade. [Pg.7]


See other pages where Aluminum oxidation number is mentioned: [Pg.176]    [Pg.1599]    [Pg.957]    [Pg.88]    [Pg.461]    [Pg.47]    [Pg.963]    [Pg.348]    [Pg.711]    [Pg.282]    [Pg.458]    [Pg.36]    [Pg.2]    [Pg.564]    [Pg.122]    [Pg.148]    [Pg.270]    [Pg.299]    [Pg.342]    [Pg.44]    [Pg.70]    [Pg.62]    [Pg.64]    [Pg.354]    [Pg.39]    [Pg.113]    [Pg.91]    [Pg.241]    [Pg.552]    [Pg.354]    [Pg.258]    [Pg.226]   
See also in sourсe #XX -- [ Pg.132 ]

See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Aluminum oxidation

Aluminum oxide

Aluminum oxide coordination number

Aluminum oxidized

Oxidation Number Oxidizer

© 2024 chempedia.info