Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminium oxide sintering

Steam forms a protective white film at temperatures up to about 250°C, but above this temperature steam can, under some conditions, react with aluminium progressively to form aluminium oxide and hydrogen. Sintered aluminium powder (S. A.P.) has relatively good resistance to steam at 500°C, but at about 300°C an addition of 1% nickel to the S.A.P. is needed to prevent rapid disintegration. [Pg.674]

Hardness of sintered aluminium oxide determined by dynamic abrasion with SiC grain, (after A. Szymaiiski, 1974)... [Pg.87]

Fig. 5.18. Impact abrasion resistance of sintered aluminium oxide. Fig. 5.18. Impact abrasion resistance of sintered aluminium oxide.
Table 5.1 shows an application of XPS to the study of the promoted iron catalyst used in the Haber synthesis of ammonia. The sizes of the various electron intensity peaks allows a modest level of quantitative analysis. This catalyst is prepared by sintering an iron oxide, such as magnetite (Fe304) with small amounts of potassium nitrate, calcium carbonate, aluminium oxide and other trace elements at about 1900 K. The unreduced solid produced on cooling is a mixture of oxides. On exposure to the nitrogen-hydrogen reactant gas mixture in the Haber process, the catalyst is converted to its operative, reduced form containing metallic iron. As shown in Table 5.1, the elemental components of the catalyst exhibit surface enrichment or depletion, and the extent of this differs between unreduced and reduced forms. [Pg.140]

One of the future woilcs is to solve the problem of aluminium oxidation so that the graded layers can be sintered densely. Adding some active metal, e. g. Mg and Sn, to the i U-Cu mixture may be a feasible ways. [Pg.310]

Chromite is a chrome ore, with the theoretieal formula Fe0.Cr203, which contains other components such as magnesium and aluminium oxides. For its use in foundries, its silica content must be lower than 2 % in order to prevent sintering at low temperatures. Its characteristics are as follows ... [Pg.56]

Pure iron(iii) oxide performs rather poorly as a WGS catalyst, due to rapid catalyst deactivation by sintering. Traditional iron catalysts typically consist of iron(iii) oxide (80-90% by mass), chromium(iii) oxide (8-10% by mass) and small amounts of other stabilisers and promoters such as copper(ii) oxide, aluminium oxide, alkali metals, zinc oxide and magnesium oxide. The small fraction of chromium(iii) oxide acts to prevent catalyst sintering, and also promotes the catalytic activity of iron. Catalyst deactivation is typically caused by poisons in the feedstock gases and by deposition of solids on the catalyst surface. [Pg.345]

Synthesis of ammonia. The synthesis reaction is dependent on the conditions of equilibrium and the kinetics of the reaction. The latter is dictated by the efficacy of the catalyst, which in turn is chosen because of its cheapness and activity. Iron is the only realistic catalyst, but its activity can be greatly increased by the use of suitable promoters. It is prepared by melting iron oxide, refractory oxides such as potassium and aluminium oxides. A solid sheet forms on cooling, and is broken down into 5-10 mm lumps. The whole is then reduced in the ammonia synthesizer, where the oxide is converted to iron crystallites separated by the refractory oxides and covered in part by KOH as a promoter. The KOH can enhance the reactivity twofold. This catalyst must be used within the temperature range 400°-540 °C. Below this the catalyst becomes uneconomically inactive above, it sinters and loses surface area. An improved iron catalyst of higher activity and longer life is a feature of the AMV process. It is important to note that much of the reason for improved and continued activity is due to the careful removal of poisons such as CO, CO2, and H2S. [Pg.148]

Platinum or sintered aluminium oxide ("Alsint") crucibles. [Pg.24]

The high-pressure sodium discharge takes place in a sintered aluminium oxide arc tube contained within a hard glass outer bulb. Until recently no suitable material was available which would withstand the extreme chemical activity of sodium at high pressure. The construction and characteristics of the high-pressure sodium lamp classified as type SON are given in Fig. 3.52. [Pg.148]

S. Liu, K. Li, and R. Hughes, Preparation of porous aluminium oxide (AljOj) hollow fibre membranes by a combined phase-inversion and sintering method. Ceramics International 29(8) (2003) 875-881. [Pg.379]

Small particles can be introduced into metals or ceramics in other ways. The most obvious is to mix a dispersoid (such as an oxide) into a powdered metal (aluminium and lead are both treated in this way), and then compact and sinter the mixed powders. [Pg.106]

Many kinds of artificial hip joints are available commercially, but they all consist of the same parts, i.e. a metal stem or shaft, usually made of a titanium alloy and a ceramic head of aluminium or zirconium oxide. The production of the ceramic head starts with a powder and ends with the sintering process. The heat treatment will cause the head to shrink. After production, the head is thoroughly tested, e.g. on its spherical shape and surface roughness. [Pg.273]

Description of the process. The simplified process flow diagram is shown in Figure 16.12. The shredder waste (ASR, plastic and electronic waste as well as MSW) is fed in an IRFB, which operates in a reducing atmosphere and at temperatures as low as 500-600°C, allowing easy control of the process. The IRFB reactor separates the combustible portion and the dust from the inert and metallic particles of the fed waste the obtained mixture of metallic and inert particles is sent to a mechanical metal separation while fuel gas and carbonaceous particles are burnt in a cyclonic combustion chamber for energy production and fine ash vitrification. Metals such as aluminium, copper and iron can be recycled as valuable products from the bottom off-stream of the IRFB as they are neither oxidized nor sintered with... [Pg.469]

The MF membranes are usually made from natural or synthetic polymers such as cellulose acetate (CA), polyvinylidene difiuoride, polyamides, polysulfone, polycarbonate, polypropylene, and polytetrafiuoroethylene (FIFE) (13). Some of the newer MF membranes are ceramic membranes based on alumina, membranes formed during the anodizing of aluminium, and carbon membrane. Glass is being used as a membrane material. Zirconium oxide can also be deposited onto a porous carbon tube. Sintered metal membranes are fabricated from stainless steel, silver, gold, platinum, and nickel, in disks and tubes. The properties of membrane materials are directly reflected in their end applications. Some criteria for their selection are mechanical strength, temperature resistance, chemical compatibility, hydrophobility, hydrophilicity, permeability, permselectivity and the cost of membrane material as well as manufacturing process. [Pg.207]


See other pages where Aluminium oxide sintering is mentioned: [Pg.95]    [Pg.95]    [Pg.243]    [Pg.252]    [Pg.151]    [Pg.338]    [Pg.141]    [Pg.500]    [Pg.108]    [Pg.220]    [Pg.365]    [Pg.60]    [Pg.598]    [Pg.469]    [Pg.318]    [Pg.481]    [Pg.380]    [Pg.99]    [Pg.272]    [Pg.109]    [Pg.224]    [Pg.254]    [Pg.617]    [Pg.38]    [Pg.143]    [Pg.90]    [Pg.387]    [Pg.320]    [Pg.323]    [Pg.49]    [Pg.264]    [Pg.142]    [Pg.40]    [Pg.19]   
See also in sourсe #XX -- [ Pg.273 , Pg.275 ]




SEARCH



Aluminium oxides

Aluminium sintering

Oxides sintered

© 2024 chempedia.info