Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic amine isomerization mechanism

Allylic amide isomerization, 117 Allylic amine isomerization ab initio calculations, 110 catalytic cycle, 104 cobalt-catalyzed, 98 double-bond migration, 104 isotope-labeling experiments, 103 kinetics, 103 mechanism, 103 model system, 110 NMR study, 104 rhodium-catalyzed, 9, 98 Allylnickel halides, 170 Allylpalladium intermediates, 193 Allylsilane protodesilylation, 305 Aluminum, chiral catalysts, 216, 234, 310 Amide dimers, NMR spectra, 282, 284 Amines ... [Pg.192]

Ab Initio MO calculations of a model complex Rh(PH3)2(NH3)(CH2=CHCH2NH2) were earned out to shed light to the detailed mechanism of Rh(l)-catalyzed isomerization of allylic amines to enamines.5 This study suggests that the square-planar [RhiPHjyNHjXCf CHCHjNHj) complex is transformed to [Rh(PH3)2(NH3)(( )-CH3CH=CHNH2)]+ via intramolecular oxidative addition of the C(l)-H bond to the Rh(I) center, giving a distorted-octahedral Rh(lll) hydride intermediate, followed by reductive elimination accompanied by allylic transposition. [Pg.163]

Like the synthesis of L-DOPA by asymmetric hydrogenation, the manufacture of L-menthol hy Takasago Company is also one of the early examples of an industrial process where asymmetric isomerization is a key step. The desired isomerization reaction is one of the steps of the overall synthetic scheme. The synthesis of L-menthol from diethyl geranylamine is shown by 9.2. The formal electron pair pushing mechanism for the isomerization of the allylic amine to the enamine proceeds according to reaction 9.3. [Pg.207]

Allyl methylcarbonate reacts with norbornene following a ruthenium-catalyzed carbonylative cyclization under carbon monoxide pressure to give cyclopentenone derivatives 12 (Scheme 4).32 Catalyst loading, amine and CO pressure have been optimized to give the cyclopentenone compound in 80% yield and a total control of the stereoselectivity (exo 100%). Aromatic or bidentate amines inhibit the reaction certainly by a too strong interaction with ruthenium. A plausible mechanism is proposed. Stereoselective CM-carboruthenation of norbornene with allyl-ruthenium complex 13 followed by carbon monoxide insertion generates an acylruthenium intermediate 15. Intramolecular carboruthenation and /3-hydride elimination of 16 afford the -olefin 17. Isomerization of the double bond under experimental conditions allows formation of the cyclopentenone derivative 12. [Pg.301]

At present, we can say that copolymerization initiated by various salts proceeds by an anionic mechanism, after dissociation of the initiators in the reaction medium. The primary step is the addition of the initiator anion to the epoxide. In the initiation by Lewis bases, i.e. by tertiary amines, initiation involves formation of a primary active centre of an anionic character. This active centre is probably generated by interaction of the tertiary amine with the anhydride and an allyl alcohol. The allyl alcohol can be formed by a base-catalyzed isomerization of the epoxide. In the presence of a proton donor, the formation of active centres is possible through interaction of tertiary amine, anhydride and proton donor without epoxide isomerization. Another way of initiation consists in a direct reaction of epoxide with tertiary amine yielding an anionic primary active centre. We believe that in both kinds of initiation in the strict absence of proton donors, the growing chain end has the character of a living polymer. The presence of proton donors, however, gives rise to transfer reactions. [Pg.130]

An ab initio method has been employed to study the mechanism of the thermal isomerization of buta-1,2-diene to buta-1,3-diene. The results of the study have indicated619 that the transformation proceeds in a stepwise manner via a radical intermediate. Experimental free energies of activation for the bond shift in halocyclooctatetraenes have been reported and analyzed by using ab initio MO calculations.620 The isomerization of hexene using a dihydridorhodium complex in dimethyl sulfoxide has been reported,621 and it has been suggested622 that the Pd(II)-catalysed homogeneous isomerization of hexenes proceeds by way of zr-allylic intermediates. A study has been made623 of alkene isomerization catalysed by the rhodium /-phosphine-tin dichloride dimeric complex, and the double-bond isomerization of olefinic amines over potassium amide loaded on alumina has been described.624... [Pg.588]

The mechanisms of the reactions of the cluster Ru3(CO)i2 with halide ions, alkoxide ions and amines, all of which involve initial rapid nucleophilic addition at a carbonyl hgand, have been reviewed.In a related study, addition of 5-proline methylester or 5-methoxymethyl pyrrolidine to a carbonyl ligand of Ru3(CO)j2 has yielded chiral carbamoyl clusters of the type (84) R = C02Me or CH20Me, Eq. (16). Such chiral clusters may have potential as new enantioselective catalysts, as shown by the observation that cluster (84), R = CH20Me) catalyzes the isomerization of the prochiral allylic alcohol nerol to give the chiral aldehyde citronellal with an enantiomeric excess of 12%. [Pg.308]


See other pages where Allylic amine isomerization mechanism is mentioned: [Pg.351]    [Pg.61]    [Pg.246]    [Pg.360]    [Pg.104]    [Pg.163]    [Pg.877]    [Pg.121]    [Pg.151]    [Pg.282]    [Pg.1183]   
See also in sourсe #XX -- [ Pg.103 ]




SEARCH



Allyl amine

Allyl amines isomerization

Allyl isomerization

Allyl mechanism

Allylation mechanism

Allylic amination

Allylic amination mechanism

Allylic aminations

Allylic isomerization

Amination mechanism

Amine mechanism

Amines Isomerism

Amines allylation

Isomerism mechanism

Isomerization mechanism

© 2024 chempedia.info