Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl carbonates oxidation

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

Allylic acetates are widely used. The oxidative addition of allylic acetates to Pd(0) is reversible, and their reaction must be carried out in the presence of bases. An important improvement in 7r-allylpalladium chemistry has been achieved by the introduction of allylic carbonates. Carbonates are highly reactive. More importantly, their reactions can be carried out under neutral con-ditions[13,14]. Also reactions of allylic carbamates[14], allyl aryl ethers[6,15], and vinyl epoxides[16,17] proceed under neutral conditions without addition of bases. [Pg.292]

Wylation under neutral conditions. Reactions which proceed under neutral conditions are highly desirable, Allylation with allylic acetates and phosphates is carried out under basic conditions. Almost no reaction of these allylic Compounds takes place in the absence of bases. The useful allylation under neutral conditions is possible with some allylic compounds. Among them, allylic carbonates 218 are the most reactive and their reactions proceed under neutral conditions[13,14,134], In the mechanism shown, the oxidative addition of the allyl carbonates 218 is followed by decarboxylation as an irreversible process to afford the 7r-allylpalladium alkoxide 219. and the generated alkoxide is sufficiently basic to pick up a proton from active methylene compounds, yielding 220. This in situ formation of the alkoxide. which is a... [Pg.319]

Co-adsorption experiments show a complex role of the nature and concentration of chemisorbed ammonia species. Ammonia is not only one of the reactants for the synthesis of acrylonitrile, but also reaction with Br()>nsted sites inhibits their reactivity. In particular, IR experiments show that two pathways of reaction are possible from chemisorbed propylene (i) to acetone via isopropoxylate intermediate or (ii) to acrolein via allyl alcoholate intermediate. The first reaction occurs preferentially at lower temperatures and in the presence of hydroxyl groups. When their reactivity is blocked by the faster reaction with ammonia, the second pathway of reaction becomes preferential. The first pathway of reaction is responsible for a degradative pathway, because acetone further transform to an acetate species with carbon chain breakage. Ammonia as NH4 reacts faster with acrylate species (formed by transformation of the acrolein intermediate) to give an acrylamide intermediate. At higher temperatures the amide may be transformed to acrylonitrile, but when Brreform ammonia and free, weakly bonded, acrylic acid. The latter easily decarboxylate forming carbon oxides. [Pg.285]

Allyl carbonate esters are also useful hydroxy-protecting groups and are introduced using allyl chloroformate. A number of Pd-based catalysts for allylic deprotection have been developed.209 They are based on a catalytic cycle in which Pd° reacts by oxidative addition and activates the allylic bond to nucleophilic substitution. Various nucleophiles are effective, including dimedone,210 pentane-2,4-dione,211 and amines.212... [Pg.266]

Substituted (5R,6A,)-6-(dimethyl(phenyl)silyl)-2-phenyldihydropyrazolo[l,2- ][l,2,4]triazole-l,3(2//,5//)-dione 716, synthesized via the [3+2] annulation of a-substituted allylic silanes 715 with PTAD, were oxidized to the corresponding hydroxy substituted urazoles 717. This work shows that allylsilanes with a single substituent at the allylic carbon undergo exclusive stereoselective [3+2] annulation (Scheme 114) <2007TL6671>. [Pg.471]

Two catalytic cycles are proposed to explain the difference in selectivity. In both cases, catalytic cycle is initiated by the oxidative addition of an alkynylstannane to nickel(O) species, leading to the formation of alkynylnickel(ll) complex 77 (Scheme 24).92 Then, an allene is inserted into the nickel(ll) complex in a manner which avoids steric repulsion with the butyl group to afford the anti-ir-a y complex 80. The carbometallation of the terminal alkyne can take place at the non-substituted allylic carbon of the corresponding syn-Ti-a y complex 78. The stereoselectivity is determined by the relative rate of the two possible insertion modes which depend on the ligand used. A bidentate... [Pg.310]

Ceric ammonium nitrate promoted oxidative addition of silyl enol ethers to 1,3-butadiene affords 1 1 mixtures of 4-(/J-oxoalkyl)-substituted 3-nitroxy-l-butene and l-nitroxy-2-butene27. Palladium(0)-catalyzed alkylation of the nitroxy isomeric mixture takes place through a common ij3 palladium complex which undergoes nucleophilic attack almost exclusively at the less substituted allylic carbon. Thus, oxidative addition of the silyl enol ether of 1-indanone to 1,3-butadiene followed by palladium-catalyzed substitution with sodium dimethyl malonate afforded 42% of a 19 1 mixture of methyl ( )-2-(methoxycarbonyl)-6-(l-oxo-2-indanyl)-4-hexenoate (5) and methyl 2-(methoxycarbonyl)-4-(l-oxo-2-indanyl)-3-vinylbutanoate (6), respectively (equation 12). [Pg.698]

Mechanistic studies showed that metalacycle la is competent to be a catalyst in asymmetric allylic substitution reactions. The reaction of benzylamine with methyl ciimamyl carbonate catalyzed by a mixture of LI and [Ir(COD)Cl]2 occurs with an induction period and forms product in 84% yield and 95% ee, whereas the same reaction catalyzed by a mixture of metalacycle la and [Ir(COD)Cl]2 occurs without an induction period in just 2 hours to form the substitution product in 81% yield and 97% ee. The latter reaction was conducted with added [Ir(COD)Cl]2 to trap the -bound LI after dissociation. This ligand must dissociate to provide a site for oxidative addition of the allylic carbonate. [Pg.185]

In addition to isolating complex 5, Markovic and Hartwig performed kinetic studies on the amination of methyl cinnamyl carbonate with aniline. The proposed mechanism involves reversible dissociation of product, reversible, endothermic oxidative addition of the allylic carbonate to form a 7i-allyliridium species, and irreversible nucleophilic attack on the 7i-allyliridium intermediate, as depicted in... [Pg.196]

Electrochemical oxidation in methanol of both a-pinene 17 and p-pinene 18 leads to opening of the four membered ring by cleavage of one allylic carbon-... [Pg.37]

The synthesis of (S)-ibuprofen (S)-34 utilizing allylic alkylation was undertaken to determine the stereochemical course of this process. The reaction of the enantiomeri-cally enriched allylic carbonate (S)-32 (95% ee) with the requisite aryl zinc bromide (Scheme 10.7) [32], under optimized reaction conditions, furnished the 3-aryl propenyl derivative (R)-33 in 90% yield (2° 1°=10 1) with inversion of configuration (100% cee). The synthesis of (S)-ibuprofen (S)-34 was then completed through the oxidative cleavage of the aUcene (R)-33 in 74% yield [33]. [Pg.201]

This electrochemical oxidation mediated by NHPI was applicable to benzylic carbons, allylic carbons, deprotection of acetals, oxidative cleavage of cyclic acetals and amide to afford benzoylated compounds, enones ", carbonyl compounds, -hydroxyethyl esters and imides, respectively (equations 31-35). [Pg.511]

Type III (no homodimerization) Acrylonitrile," protected 3° allylamines" Vinyl trialkoxysilanes, vinyl siloxanes 1,1-Disubstituted olefins, " non-bulky trisubstituted olefms, vinyl phosphonates, " vinyl phosphine oxides,phenyl vinyl sulfone, acrylonitrile, 4° allylic carbons (all alkyl substituents), protected 3° allylic alcohols, 7,Aolefm of 2-subst. 1.3- butadienes, 7,Aolefin of electronically deactivated 1.3- butadienes ... [Pg.196]

The Cope rearrangement of 24 gives 2,6,10-undecatrienyldimethylamine[28], Sativene (25j[29] and diquinane (26) have been synthesized by applying three different palladium-catalyzed reactions [oxidative cyclization of the 1,5-diene with Pd(OAc)2, intramolecular allylation of a /i-keto ester with allylic carbonate, and oxidation of terminal alkene to methyl ketone] using allyloctadienyl-dimethylamine (24) as a building block[30]. [Pg.501]

Oxidation of the allylic carbon of alkenes may lead to allylic alcohols and derivatives or a, 3-unsaturated carbonyl compounds. Selenium dioxide is the reagent of choice to carry out the former transformation. In the latter process, which is more difficult to accomplish, Cr(VI) compounds are usually applied. In certain cases, mixture of products of both types of oxidation, as well as isomeric compounds resulting from allylic rearrangement, may be formed. Oxidation of 2-alkenes to the corresponding cc,p-unsaturated carboxylic acids, particularly the oxidation of propylene to acrolein and acrylic acid, as well as ammoxidation to acrylonitrile, has commercial importance (see Sections 9.5.2 and 9.5.3). [Pg.483]

General observations of allylic oxidation with Se02 were summarized as early as 1939.672 According to these rules,671 672 the order of reactivity of different allylic carbons is CH2 > CH3 > CH. The oxidation usually takes place at the more substituted side of the double bond, and a strong preference of the formation of the corresponding (E)-allylic alcohols is observed673 [Eq. (9.122)674] ... [Pg.484]

Regarding the formation of by-products (acetonitrile, HCN, carbon oxides), little is known in detail. The first reaction step, formation of symmetrical allyl intermediate, is likely to be common for both main and side reactions. The work of Cathala and Germain (see below) indicates that these side reactions are complex processes that partially occur in the homogeneous gas phase. [Pg.165]

Methylmagnesium N-cyclohexyliso-propylamide, 189 By oxidation at an allylic carbon Selenium dioxide, 272 By reduction of a,0-unsaturated carbonyl compounds Sodium borohydride, 278 Sodium dithionite, 281 Other methods r-Butyllithium, 58 Butyllithium-Potassium f-butoxide,... [Pg.383]

Considerable use has also been made of allyl carbonates as substrates for the allylation of Pd enolates.9 The reaction of Pd° complexes with allyl enol carbonates119,120 proceeds by initial oxidative addition into the allylic C—O bond of the carbonate followed by decarboxylation, yielding an allylpalladium enolate, which subsequently produces Pd° and the allylated ketone (equation 22). In like fashion, except now in an intermolecular sense, allyl carbonates have been found to allylate enol silyl ethers (equation 23),121 enol acetates (with MeOSnBu3 as cocatalyst) (equation 24),122 ketene silyl acetals (equation 25)123 and anions a to nitro, cyano, sulfonyl and keto groups.115,124 In these cases, the alkoxy moiety liberated from the carbonate on decarboxylation serves as the key reagent in generating the Pd enolate. [Pg.592]

A similar in situ generation of a sulfide nucleophile can be accomplished by the reaction of an allylic carbonate with a Pd° catalyst and PhSSiMe3. Following oxidative addition by the Pd° into the allylic C—O bond to form the ir-allyl complex, CO2 is lost from the carbonate counterion, generating... [Pg.624]

Allylic alcohol 6 is first reacted with acid chloride 18 in the presence of pyridine to give allylic carbonate 19. An allylic alkylation of sodium salt 20, catalyzed by palladium in the oxidation state 0. leads then to compound 7,... [Pg.116]

Russian workers using 14C-labeled propylene, acrolein, and acetaldehyde (29-31) have determined that carbon oxides are formed chiefly through the further oxidation of acrolein and that acetaldehyde and formaldehyde are produced either from acrolein or directly from the symmetrical 7r-allylic intermediate. These two saturated aldehydes can then undergo further oxidation (about 20 times more rapidly than acrolein) to CO and COj. The overall scheme proposed is given in Fig. 4. [Pg.190]

Linear polymers from conjugated dienes readily undergo oxidation in air, in some cases even at room temperature (14). The allylic carbon... [Pg.327]


See other pages where Allyl carbonates oxidation is mentioned: [Pg.890]    [Pg.720]    [Pg.890]    [Pg.720]    [Pg.364]    [Pg.365]    [Pg.384]    [Pg.427]    [Pg.75]    [Pg.331]    [Pg.8]    [Pg.62]    [Pg.75]    [Pg.69]    [Pg.192]    [Pg.22]    [Pg.189]    [Pg.199]    [Pg.470]    [Pg.517]    [Pg.238]    [Pg.116]   
See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.306 , Pg.307 , Pg.318 ]

See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.306 , Pg.307 , Pg.318 ]




SEARCH



Allyl carbonate

Allyl carbonates allylation

Allyl carbonates oxidative rearrangement

Allyl oxide

Allylic carbon

Allylic carbon oxidation

Allylic carbon oxidation

Allylic carbons, electrochemical oxidation

Allylic oxidation

Carbon allyl

Carbon allylation

© 2024 chempedia.info