Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloying elements melting points

National Institute of Standards and Technology (NIST). The NIST is the source of many of the standards used in chemical and physical analyses in the United States and throughout the world. The standards prepared and distributed by the NIST are used to caUbrate measurement systems and to provide a central basis for uniformity and accuracy of measurement. At present, over 1200 Standard Reference Materials (SRMs) are available and are described by the NIST (15). Included are many steels, nonferrous alloys, high purity metals, primary standards for use in volumetric analysis, microchemical standards, clinical laboratory standards, biological material certified for trace elements, environmental standards, trace element standards, ion-activity standards (for pH and ion-selective electrodes), freezing and melting point standards, colorimetry standards, optical standards, radioactivity standards, particle-size standards, and density standards. Certificates are issued with the standard reference materials showing values for the parameters that have been determined. [Pg.447]

Nickel occurs in the first transition row in Group 10 (VIIIB) of the Periodic Table. Some physical properties are given in Table 1 (1 4). Nickel is a high melting point element having a ductile crystal stmcture. Its chemical properties allow it to be combined with other elements to form many alloys. [Pg.1]

No fewer than 14 pure metals have densities se4.5 Mg (see Table 10.1). Of these, titanium, aluminium and magnesium are in common use as structural materials. Beryllium is difficult to work and is toxic, but it is used in moderate quantities for heat shields and structural members in rockets. Lithium is used as an alloying element in aluminium to lower its density and save weight on airframes. Yttrium has an excellent set of properties and, although scarce, may eventually find applications in the nuclear-powered aircraft project. But the majority are unsuitable for structural use because they are chemically reactive or have low melting points." ... [Pg.100]

A common constituent of salt baths is boric oxide and the use of such mixtures in contact with nickel-rich alloys containing Ti, A1 or other strong reducing elements is to be avoided, owing to the possible formation of a nickel-boron eutectic of low melting point. [Pg.1089]

It must be noted that the values of Dq and E are influenced by the concentration of the solute metal and also by the presence of alloying elements in the solvent. It has also been shown that the diffusion coefficient for a given solute is in inverse proportion to the melting point of the solvent. D is least for metals forming continuous series of solid solutions and for self-diffusion. [Pg.399]

Attention has been given for some time to the use of lithium alloys as an alternative to elemental lithium. Groups working on batteries with molten salt electrolytes that operate at temperatures of 400-450 °C, well above the melting point of lithium, were especially interested in this possibility. Two major directions evolved. One involved the use of lithium-aluminium alloys [5, 6], whereas another was concerned with lithium-silicon alloys [7-9]. [Pg.361]

Calculate the relative number of atoms of each element contained in each of the following alloys (a) Wood s metal, which is a low-melting-point alloy used to trigger automatic sprinkler systems and is 12.5% tin, 12.5% cadmium, and 24% lead by mass in bismuth (b) a steel that is 1.75% by mass carbon in iron. [Pg.330]

Arsenic and antimony are metalloids. They have been known in the pure state since ancient times because they are easily obtained from their ores (Fig. 15.3). In the elemental state, they are used primarily in the semiconductor industry and in the lead alloys used as electrodes in storage batteries. Gallium arsenide is used in lasers, including the lasers used in CD players. Metallic bismuth, with its large, weakly bonded atoms, has a low melting point and is used in alloys that serve as fire detectors in sprinkler systems the alloy melts when a fire breaks out nearby, and the sprinkler system is activated. Like ice, solid bismuth is less dense than the liquid. As a result, molten bismuth does not shrink when it solidifies in molds, and so it is used to make low-temperature castings. [Pg.745]

Sodium-zinc alloys for phase diagram determination are prepared by melting the elements in glass tubes under H2- Samples of NaZujj are prepared by heating zinc for several hours above the melting point of NaZn,3 (557°C) with xs Na in alundum extraction thimbles with N2 or Ar in a steel bomb scaled with copper gaskets. Excess Na was removed by extraction with liq NHj. Both KZn,3 and KCd,2 were prepared in this manner. ... [Pg.430]

The brittle, silvery, shiny metal was long considered the last stable element of the Periodic Table. In 2003 it was unmasked as an extremely weak alpha emitter (half-life 20 billion years). Like thulium, there is only one isotope. Bismuth alloys have low melting points (fuses, fire sprinklers). As an additive in tiny amounts, it imparts special properties on a range of metals. Applied in electronics and optoelectronics. The oxichloride (BiOCl) gives rise to pearlescent pigments (cosmetics). As bismuth is practically nontoxic, its compounds have medical applications. The basic oxide neutralizes stomach acids. A multitalented element. Crystallizes with an impressive layering effect (see right). [Pg.77]

The low-melting-point (157 °C), silver metal is mainly used in alloys to decrease the melting point. Combined with tin, lead, and bismuth to produce soldering metal for wide temperature ranges. The element is highly valuable in the electronics age as its unique properties are ideal for solar cells, optoelectronics, and microwave equipment. The arsenide is used in lasers and is also suitable for transistors. ITO (indium tin oxide) is a transparent semiconductor with wide application in displays, touchscreens, etc. In the household, indium as an additive prevents the tarnishing of silverware. Some electronic wristwatches contain indium batteries. [Pg.137]

The silvery, shiny, ductile metal is passivated with an oxide layer. Chemically very similar to and always found with zirconium (like chemical twins, with almost identical ionic radii) the two are difficult to separate. Used in control rods in nuclear reactors (e.g. in nuclear submarines), as it absorbs electrons more effectively than any other element. Also used in special lamps and flash devices. Alloys with niobium and tantalum are used in the construction of chemical plants. Hafnium dioxide is a better insulator than Si02. Hafnium carbide (HfC) has the highest melting point of all solid substances (3890 °C record ). [Pg.149]

Sometime after the discovery of processes for smelting metals, it became clear that some of their properties could be altered and in many cases improved by alloying, that is, by mixing metals with other elements. Some alloys made by mixing two metals, for example, were found to be harder or softer than the separate metals. Also the melting point of an alloy was often lower than that of its components, which made the alloys easier to work. Soon it was appreciated that many other properties of alloys, such as their strength, workability, and resistance to decay, were more suitable for required needs than were its components, and the manufacture and use of alloys become widespread (see Table 35). [Pg.190]

Table 5.5. Highest melting points in the alloys of alkali metals (A) with compound-forming elements of the 5th row of the Periodic Table. See the introduction for the meaning of the symbols. Table 5.5. Highest melting points in the alloys of alkali metals (A) with compound-forming elements of the 5th row of the Periodic Table. See the introduction for the meaning of the symbols.

See other pages where Alloying elements melting points is mentioned: [Pg.415]    [Pg.51]    [Pg.443]    [Pg.109]    [Pg.114]    [Pg.124]    [Pg.411]    [Pg.435]    [Pg.163]    [Pg.94]    [Pg.101]    [Pg.102]    [Pg.285]    [Pg.383]    [Pg.186]    [Pg.298]    [Pg.965]    [Pg.178]    [Pg.73]    [Pg.412]    [Pg.419]    [Pg.420]    [Pg.175]    [Pg.150]    [Pg.150]    [Pg.152]    [Pg.178]    [Pg.489]    [Pg.22]    [Pg.186]    [Pg.298]    [Pg.170]    [Pg.352]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Alloying elements

Element melting point

Melting point alloys

© 2024 chempedia.info