Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloys principles

Brenner A (1963) Electrodeposition of alloys - Principles and practice. Academic Press, New York... [Pg.140]

A Brenner, Electrodeposition of Alloys. Principles and Practises, udemic Press, New York, 1963,... [Pg.376]

A. Brenner, Electrodeposition of Alloys Principles and Practice, Academic, New York and London (1963). [Pg.156]

An important application of the HMT is the test for ferrous inclusions in high pressure turbine disks made from a non-magnetic metal alloy. On principle, such ferrous inclusions can be introduced during the manufacturing process and, if present, they can be the origin of cracks in these most critical parts. Therefore such tests are stringent necessary. [Pg.989]

Although this discussion has been in temis of molecules in solution, the same principles apply to other cases, such as precipitates in an alloy or composites of ceramic particles dispersed in a polymer. The density, p(r), is... [Pg.1370]

Two approaches have been taken to produce metal-matrix composites (qv) incorporation of fibers into a matrix by mechanical means and in situ preparation of a two-phase fibrous or lamellar material by controlled solidification or heat treatment. The principles of strengthening for alloys prepared by the former technique are well estabUshed (24), primarily because yielding and even fracture of these materials occurs while the reinforcing phase is elastically deformed. Under these conditions both strength and modulus increase linearly with volume fraction of reinforcement. However, the deformation of in situ, ie, eutectic, eutectoid, peritectic, or peritectoid, composites usually involves some plastic deformation of the reinforcing phase, and this presents many complexities in analysis and prediction of properties. [Pg.115]

A thorough review of the principles of siUcon and ferrosiUcon refining has been pubUshed (5,6). The equiUbrium ternary diagram between the Si02—CaO—AI2O2 slag and the Si—Al—Ca alloy at 1550°C is shown in Figure 1 (6). [Pg.536]

J. Kr. Tuset, Principles of Silicon Eefning International Seminar on Refining and Alloying of Liquid Aluminum and Eerro-AHoys, Trondheim, Norway, Aug. 26,1985. [Pg.542]

In any brazing/soldering process, a molten alloy comes in contact with a surface of solid, which may be an alloy, a ceramic, or a composite material (see Ceramics Composite materials). For a molten alloy to advance over the soHd surface a special relationship has to exist between surface energies of the hquid—gas, soHd—gas, and Hquid—soHd interfaces. The same relationships should, in principle, hold in joining processes where a molten alloy has to fill the gaps existing between surfaces of the parts to be joined. In general, the molten alloy should have a lower surface tension than that of the base material. [Pg.241]

Heating and Cooling. Heat must be appHed to form the molten zones, and this heat much be removed from the adjacent sohd material (4,70). In principle, any heat source can be used, including direct flames. However, the most common method is to place electrical resistance heaters around the container. In air, nichrome wine is useflil to ca 1000°C, Kanthal to ca 1300°C, and platinum-rhodium alloys to ca 1700°C. In an inert atmosphere or vacuum, molybdenum, tungsten, and graphite can be used to well over 2000°C. [Pg.451]

Copper—chromium and copper—nickel—silicon—chromium alloys are also precipitation hardenable. The precipitates are nickel sdicides, chromium silicides, and elemental chromium. If conductivity is critical, the chromium—silicon ratio should be held at 10 1 so that appreciable amounts of either element are not left in soHd solution in the copper after aging. Lithium can be used as a deoxidizer in copper alloys when conductivity is important. For a discussion of the principle of age- or precipitation-hardening copper alloys, see Copperalloys,wrought copperalloys. [Pg.238]

In this chapter we look first at an important class of alloys designed to resist corrosion the stainless steels. We then examine a more complicated problem that of protecting the most advanced gas turbine blades from gas attack. The basic principle applicable to both cases is to coat the steel or the blade with a stable ceramic usually Cr203 or AI2O3. But the ways this is done differ widely. The most successful are those which produce a ceramic film which heals itself if damaged - as we shall now describe. [Pg.219]

These three passive systems are important in the technique of anodic protection (see Chapter 21). The kinetics of the cathodic partial reaction and therefore curves of type I, II or III depend on the material and the particular medium. Case III can be achieved by alloying additions of cathodically acting elements such as Pt, Pd, Ag, and Cu. In principle, this is a case of galvanic anodic protection by cathodic constituents of the microstructure [50]. [Pg.61]

The electron—photon coupling that forms the microscopic basis of MOKE makes it possible, in principle, to determine the electron spin-dependent band structure of elements and alloys. This is done by examining the dependence of the Kerr response on the wavelength of the incident light. [Pg.725]

The development of new polymer alloys has caused a lot of excitement in recent years but in fact the concept has been around for a long time. Indeed one of the major commercial successes of today, ABS, is in fact an alloy of acrylonitrile, butadiene and styrene. The principle of alloying plastics is similar to that of alloying metals - to achieve in one material the advantages possessed by several others. The recent increased interest and activity in the field of polymer alloys has occurred as a result of several new factors. One is the development of more sophisticated techniques for combining plastics which were previously considered to be incompatible. Another is the keen competition for a share of new market areas such as automobile bumpers, body panels etc. These applications call for combinations of properties not previously available in a single plastic and it has been found that it is less expensive to combine existing plastics than to develop a new monomer on which to base the new plastic. [Pg.11]

In summary, we have demonstrated the possibility of calculating the phase stability of a magnetic random alloy from first principles by means of LMTO-CPA theory. Our calculated phase diagram is in good agreement with experiment and shows a transition from the partially ordered a phase to an hep random alloy at 85% Co concentration. [Pg.17]

We shall first review the basic principles of VASP and than describe exemplary applications to alloys and compounds (a) the calculation of the elastic and dynamic properties of a metallic compound (CoSi2), (b) the surface reconstruction of a semiconducting compound (SiC), and (c) the calculation of the structural and electronic properties of K Sbi-j, Zintl-phases in the licpiid state. [Pg.70]


See other pages where Alloys principles is mentioned: [Pg.1364]    [Pg.334]    [Pg.121]    [Pg.179]    [Pg.220]    [Pg.125]    [Pg.336]    [Pg.336]    [Pg.397]    [Pg.420]    [Pg.202]    [Pg.219]    [Pg.252]    [Pg.87]    [Pg.101]    [Pg.475]    [Pg.278]    [Pg.76]    [Pg.77]    [Pg.96]    [Pg.182]    [Pg.201]    [Pg.518]    [Pg.287]    [Pg.63]    [Pg.64]    [Pg.78]    [Pg.115]   


SEARCH



Alloy design principle

Alloys and Grids. Grid Design Principles

© 2024 chempedia.info