Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allene intermediate system

This system was described in one report and has been synthesized by a copper-assisted cycloisomerization of alkynyl imines. The authors proposed the following mechanism at first, 372 could undergo a base-induced propargyl-allenyl isomerization to form 373 next, coordination of copper to the terminal double bond of the allene (intermediate 374) would make it subjected to intramolecular nucleophilic attack to produce a zwitterion 375. The latter would isomerize into the more stable zwitterionic intermediate 376, which would be transformed to the thiazole 377 (Scheme 55) <2001JA2074>. [Pg.94]

Hydration of allene and mono- and disubstituted allenes leads to ketones through the rearrangement of the intermediate enols.29 Further details of the mechanism are not known, but protonation of the terminal carbon in monosubstituted allenes is probable. Although the formation of isomeric ketones may be expected, only ketones possessing the keto function on the central carbon of the allene bond system were found to form.30 When alcohols add to allenes, enol ethers of the corresponding ketones are usually the products. They may further react to form acetals. Hg2+ salts may be used as catalysts.31... [Pg.286]

Irradiation of the trisilane system in the presence of l,4-bis(trimethylsilanyl)buta-l,3-diyne affords the as- and // ///Av-isomcnc l,3-dimethylene-2,4-disilacyclobutane derivatives, presumably via a 1-sila-allene intermediate (Equation 32) < 1999EJI2301 >. [Pg.928]

For the allene-olefin system, orbital symmetry controls the stereochemistry leading to the 2-(dimethylene) allylene intermediate as though the reaction were to be an energetically concerted Jt2s + ji2s + process,... [Pg.24]

Recently, Myers cyclizations were used to synthesize naphthalenic and benz[e]indene systems. Grissom and co-workers have constructed them from ene-diyne vinyl ether precursor 128 [46], The major pathway involves a Claisen rearrangement of 128 to provide the enyne-allene intermediate 129, which quickly undergoes Myers cycliza-tion to provide aldehyde 131 (Scheme 23). Bergman cyclization of the ene-diyne system to yield the tricyclic ether, 134, constitutes the minor pathway. [Pg.899]

The intermediate 190 of the intramolecular aminopalladation of an allenic bond with jV-tosylcarbamate undergoes insertion of allylic chloride. Subsequent elimination of PdCl2 occurs to afford the 1,4-diene system 191. The regeneration of Pd(II) species makes the reaction catalytic without using a reoxidant[190]. [Pg.47]

Aryl or alkenyl halides attack the central carbon of the allene system in the 2,3-butadien-l-ol 120 to form the 7r-allyl intermediate 121, which undergoes elimination reaction to afford the o,/3-unsaturated ketone 122 or aldehyde. The reaction proceeds smoothly in DMSO using dppe as a ligandflOl]. [Pg.145]

Allenes react with other typical electrophiles such as the halogens and mercuric ion. In systems where bridged-ion intermediates would be expected, nucleophilic capture generally occurs at the allylic position. This pattern is revealed, for example, in the products of solvent capture in halogen additions and by the structures of mercuration products. ... [Pg.377]

Four-membered heterocycles are easily formed via [2-I-2] cycloaddition reac tions [65] These cycloaddmon reactions normally represent multistep processes with dipolar or biradical intermediates The fact that heterocumulenes, like isocyanates, react with electron-deficient C=X systems is well-known [116] Via this route, (1 lactones are formed on addition of ketene derivatives to hexafluoroacetone [117, 118] The presence of a trifluoromethyl group adjacent to the C=N bond in quinoxalines, 1,4-benzoxazin-2-ones, l,2,4-triazm-5-ones, and l,2,4-tnazin-3,5-diones accelerates [2-I-2] photocycloaddition processes with ketenes and allenes [106] to yield the corresponding azetidine derivatives Starting from olefins, fluonnaied oxetanes are formed thermally and photochemically [119, 120] The reaction of 5//-l,2-azaphospholes with fluonnated ketones leads to [2-i-2j cycloadducts [121] (equation 27)... [Pg.853]

In acyclic propargylic systems, organocopper and -cuprate reagents react similarly to afford allenes. An overall anti-Sfl process is involved, probably via a copper(III) intermediate. Typical examples are shown in Table 3. [Pg.885]

The [(T -C3H5)PdCl]2/dppf/AcOH catalytic system has been used for the bis(hy-droamination) of 3-alken-l-ynes to alkenic 1,4-diamines (Eq. 4.94), a reaction which seems to be mechanistically related to the hydroamination of allenes since an a-al-lenic amine CH2=C=CH(R )CH2NR2 is believed to be an intermediate [318]. [Pg.130]

A unique system for catalytic silaboration of allenes, in which a catalytic amount of organic halide is used as a crucial additive, has been reported (Equation (86)).232 In the presence of Pd2(dba)3 (5 mol%) with 3-iodo-2-methyl-2-cyclohexen-l-one (10mol%), reactions of terminal allenes with a silylborane afford /3-silylallylboranes in good yields with excellent regioselectivity. It is worth noting that the addition takes place at the terminal C=C bond in contrast to the above-mentioned palladium-catalyzed silaboration. The alkenyl iodide can be replaced with iodine or trimethylsilyl iodide. The key reaction intermediate seems to be silylpalladium(n) iodide, which promotes the insertion of allenes with Si-C bond formation at the central -carbon. [Pg.762]

Hydrozirconation of allenic systems preferentially leads to allylic zirconocenes, which are highly reactive and thus very useful organometallic reagents. Allenic sulfides react in the expected fashion to give the (E)-y-thiophenylallylzirconocene chloride 20 (Scheme 4.18) [47]. These intermediates, upon introduction of an aldehyde or methyl ketone, give predominantly the anti isomer (ratios from 82 18 to > 97 3). Exclusive 1,2-addition was observed by Suzuki et al. in the case of an a,f5-unsaturated aldehyde. As long as the steric demands of the two substituents attached to the ketone carbonyl are significantly different, synthetically useful levels of selectivity can be achieved. [Pg.119]

Brown proposed a mechanism where the enolate radical resulting from the radical addition reacts with the trialkylborane to give a boron enolate and a new alkyl radical that can propagate the chain (Scheme 24) [61]. The formation of the intermediate boron enolate was confirmed by H NMR spectroscopy [66,67]. The role of water present in the system is to hydrolyze the boron enolate and to prevent its degradation by undesired free-radical processes. This hydrolysis step is essential when alkynones [68] and acrylonitrile [58] are used as radical traps since the resulting allenes or keteneimines respectively, react readily with radical species. Maillard and Walton have shown by nB NMR, ll NMR und IR spectroscopy, that tri-ethylborane does complex methyl vinyl ketone, acrolein and 3-methylbut-3-en-2-one. They proposed that the reaction of triethylborane with these traps involves complexation of the trap by the Lewis acidic borane prior to conjugate addition [69]. [Pg.95]

The treatment of 23 with methyllithium in the presence of furan gave rise to the tetracyclic product 26, which is obviously a [4 + 2]-cycloadduct of furan to the 1,2-cyclopentadiene derivative 25 [27]. The feature that the oxanorbornene system of 26 carries its saturated substituent in the endo-position is analogous to the [4 + 2]-cycloadducts of furan to all six-membered cyclic allenes (see Section 6.3). Balci et al. [36] also provided evidence for the generation of l-phenyl-l,2-cyclopentadiene. They postulated this species to be an intermediate in the reaction of l-phenyl-2-iodocydo-pentene with potassium tert-butoxide in benzene at 240 °C, which resulted in the formation of 1-phenyl- and 1,2-diphenylcyclopentene. Both products were considered as evidence in favor of the diradical nature rather than the allene structure of 1-phe-nyl-1,2 -cyclopentadiene. [Pg.247]

Two types of derivatives of 1,2-cyclohexadiene with two heteroatoms were proposed as reactive intermediates more than 20 years ago. Lloyd and McNab [168] observed the reaction of the 5-bromo-l,2-dihydropyrimidinium ions 411 with thiourea in refluxing ethanol to give the bromine-free cations 413. Suspected as intermediates, the 5d2-dihydropyrimidines 412 were initially considered as zwitterions of the type 414-Zj. However, quantum-chemical calculations on the parent systems suggested an unambiguous preference of the allene structure 414 over the zwitterion 414-Za [169]. [Pg.314]

The l-oxa-2,4,5-cycloheptatrienes 602 and 603 were postulated to be intermediates in the rearrangement of certain (ethynylfuryl)oxiranes to furo[3,4-b]furans [251]. The replacement of the methylene groups of 1,2-cycloheptadiene (465) by SiMe2 groups and the introduction of substituents at the allene moiety allowed the preparation of isolable seven-membered ring allenes. Thus, Barton et ah [177] obtained 604 and Ando et al. [178] 605. A few reactions of these systems have also been studied [177, 252]. Both groups [178, 253] synthesized the [4.4]betweenallene 606 and determined its structure by X-ray diffraction. [Pg.350]

The cumulated Jt-system of allenes has been described as consisting of two comparatively unperturbed double bonds with regard to its reactivity towards nucleophiles or electrophiles [10]. Early reports on radical additions to 1,2-dienes, however, already pointed to peculiarities of the allene system concerning its reactivity towards intermediates with unpaired electrons [11-14], It was soon realized that no such correlation between polar and steric substituent effects existed, similar to what had been uncovered for the reaction of radicals with olefins, in order to predict selectivities in radical additions to cumulated dienes [4, 15],... [Pg.701]

The oxidative cyclization of vinylallenes need not be directed by a pendant hydroxyl group in order to succeed. The higher reactivity of the allene compared with the exocyclic methylene group in 73 (Eq. 13.23) with monoperphthalic acid leads primarily to the allene oxide which rearranges to cydopentenone 74 [27]. Inevitably some epoxidation of the alkene also takes place during the reaction. When m-CPBA is used as the oxidant, another side reaction is associated with m-chlorobenzoic add-mediated decomposition of the intermediate epoxide. It is possible to overcome this problem by performing the epoxidation in dichloromethane in a two-phase system with aqueous bicarbonate so as to buffer the add [28]. [Pg.828]

The stereoselectivity of the allene attack has been demonstrated by the catalytic reaction of cis and trans seven-membered allenic compounds, in which cis- and trans-fused 5,7-ring systems are provided in 76 and 40% yield, respectively, via Jt-allylpalladium intermediates (Scheme 16.91). [Pg.964]

Allenes have also been used as substrates in free radical cyclizations. Dener and Hart demonstrated that such entries are valuable in constructing pyrrolizidine and indolizidine ring systems [71]. In a total synthesis of pyrrolizidine base (+)-heliotri-dine (340), compound 338 possessing an allene functionality was used as a key intermediate (Scheme 19.62). Tri-n-butyltin radical-mediated carbon-selenium bond homolysis of 338 followed by the addition of the free radical to the allene moiety... [Pg.1086]


See other pages where Allene intermediate system is mentioned: [Pg.1017]    [Pg.391]    [Pg.326]    [Pg.128]    [Pg.120]    [Pg.120]    [Pg.5890]    [Pg.41]    [Pg.90]    [Pg.99]    [Pg.289]    [Pg.110]    [Pg.198]    [Pg.485]    [Pg.265]    [Pg.182]    [Pg.664]    [Pg.609]    [Pg.69]    [Pg.185]    [Pg.280]    [Pg.292]    [Pg.297]    [Pg.340]    [Pg.724]    [Pg.724]    [Pg.952]    [Pg.677]    [Pg.740]   
See also in sourсe #XX -- [ Pg.245 , Pg.245 ]




SEARCH



Allene intermediate

Intermediate allenes

© 2024 chempedia.info