Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynyl complexes 3 + 2 cycloaddition reactions

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

In a similar process, tertiary enaminones react with alkynylcarbene complexes to give the corresponding pyranylidene complexes following a reaction pathway analogous to that described above. First, a [2+2] cycloaddition reaction between the alkynyl moiety of the carbene complex and the C=C double bond of the enamine generates a cyclobutene intermediate, which evolves by a conrotatory cyclobutene ring opening followed by a cyclisation process [94] (Scheme 49). [Pg.92]

A characteristic feature of contemporary investigations in the held under consideration, is the interest in cycloaddition reactions of nitrile oxides with acetylenes in which properties of the C=C bond are modified by complex formation or by an adjacent metal or metalloid atom. The use of such compounds offers promising synthetic results. In particular, unlike the frequently unselec-tive reactions of 1,3-enynes with 1,3-dipoles, nitrile oxides add chemo-, regio-and stereoselectively to the free double bond of (l,3-enyne)Co2(CO)6 complexes to provide 5-alkynyl-2-oxazoline derivatives in moderate to excellent yield. For example, enyne 215 reacts with in situ generated PhCNO to give 80% yield of isoxazoline 216 (372). [Pg.64]

In an analogous late-stage arylation approach, terminal alkyne 31 was envisioned as a versatile intermediate. Slow addition of 4-pentynoyl chloride to imine 3 and (n-Bu)3N at reflux (efficient condenser, 100°C, 12 h, 1 1 toluene heptane) afforded only trace amounts of 31. Reaction of 4-pentynoyl chloride with triethylamine in methylene chloride under preformed ketene conditions ( 78°C, 1 h), followed by addition of 3 and warming to — 10°C over 4 h, afforded a complex mixture of products. Since high-yield preparation of 31 remained elusive, access to internal alkynyl analogs (type 33) was accomplished by preassembly of the appropriate arylalkynyl acid substrate for the ketene-imine cycloaddition reaction (Scheme 13.9). [Pg.194]

Reactions of cyclopentadienyl- and (pentmethylcyclopentadienyl)iron dicarbonyl 2-alkynyl complexes as well as cyclopentadienylmolybdenum tricarbonyl 2-alkynyl complexes with 4,5-diphenyl-3,6-dihydro-l,2-dithiin 1-oxide 111 were shown to yield transition metal-substituted five-membered ring thiosulfinate esters 112 in moderate to excellent yields (Scheme 27) <19910M2936, 1989JA8268>. These reactions are formal [3-1-2] cycloadditions. When... [Pg.700]

Aminothiophenol 37 and 277 formed an isolable adduct 278 (X = S) that on heating was transformed to a mixture of complex 283 (10%) and the demetallated benzothiazepinone 284 (51%) (Scheme 50) <2003CEJ4943>. Similarly, monocyclic 1,4-oxazepinone derivatives of tungsten and chromium have been prepared by a domino [4+2]/[2+2] cycloaddition reaction of 1-alkynyl Fischer carbenes with oxazolines <20050M302>. [Pg.290]

Many cycloaddition reactions to the C=C bond of (l-alkynyl)carbene complexes have been reported. [Pg.180]

Cycloaddition reactions of a,/3-unsaturated chromium and tungsten complexes have been studied to a great extent and have been reviewed.3 -6 Our report on cycloaddition of (l-alkynyl)carbene complexes is restricted to a short abstract and an update including more recent results. A most remarkable feature of [4+2] cycloadditions of 1,3 dienes to C=C bonds of (l-alkynyl)carbene complexes, e.g., li, is that such reactions proceed under very mild conditions, compared to those for reactions of propargylic esters, e.g., 41. Thus, formation of a Diels-Alder adduct, e.g., a norbornadiene derivative 42, can be achieved at 25°C via carbene complexes instead of at 190°C via the direct route (Scheme 15).68 Ligand disengagement from compound 40 can be achieved in various ways, e.g., by formation of an ester 43 through oxidation of the Cr=C bond, or by formation of an allyl silane 4369 or a stannane.70 71... [Pg.182]

Dipolar cycloaddition reactions are most commonly applied for the synthesis of five-membered heterocyclic compounds.86 87 [3+2] cycloaddition reactions of transition-metal propargyl complexes have been reviewed.88 Addition of diazomethane to carbene complexes (CO)5Cr= C(OEt)R results in cleavage of the M = C bond with formation of enol ethers H2C = C(OEt)R,3 89 but (l-alkynyl)carbene complexes undergo 1,3-dipolar cycloaddition reactions at the M = C as well as at the C=C bond. Compound lb (M = W, R = Ph) affords a mixture of pyrazole derivatives 61 and 62 with 1 eq diazomethane,90 but compound 62 is obtained as sole... [Pg.186]

Addition of l,3-thiazolium-4-olates to (l-alkynyl)carbene tungsten complexes lb,n affords thiophene and/or pyridone complexes, 64 and 65, by extrusion of sulfur and isocyanate, respectively, from the [3+2] adduct formed initially (Scheme 21).97 [3+2] cycloaddition reactions of azomethine... [Pg.187]

As already mentioned in the introduction, anionic early transition metallocene complexes of the type [Cp2Zr(R1)(R2)(R3)] with R, R2, R3 = alkyl, alkenyl, or alkynyl, are unstable. Most of them exhibit electrostatic anion-cation pairing resulting in dimer, trimer, oligomer, or polymeric structures [21-25]. In marked contrast, stable 18 electron-zirconate complexes were prepared via a formal [3 + 2] cycloaddition reaction between 2-phosphino-zirconaindene 16a and alkyne derivatives (Scheme 5) [26,27]. [Pg.58]

However, yields in the intermolecular cycloaddition reactions of vinylcarbene complexes, formed by intramolecular insertion of an alkynyl tethered metal carbene complex, are higher when molybdenum rather than chromium or tungsten carbene complexes are employed. Mild thermolysis (THF, 65 °C, 1 h) in the presence of ten equivalents of an electronically undemanding alkene directly leads to the 2-alkyl-2-(2-methoxycyclopentenyl)cyclopropanes 31. ... [Pg.323]

Alkynyl complexes have been reported to undergo [2+2] and [2+4] cycloaddition reactions with ketenes Alkynes have been reacted with cyclopropylcarbene-chromium... [Pg.508]

All these results seemed to indicate that this reaction was ideal for the con-stmction of the (—)-berkelic acid skeleton. However, a serious problem was still unresolved at this point how to constmct the additional pyran ring contained in the natural product. Nevertheless, our experience on cycloisomerization reactions led us to speculate on the possibility that a unique metal complex could promote the cycloisomerization of alkynol 15 to give the exo-cyclic enol ether 19 and also that the cycloisomerization of an alkynyl-substituted salicylaldehyde 23 would give 25. Thus, activation of the alkyne of 15 should promote a hydroalkoxylation reaction to give the exocyclic enol ether 19. On the other hand, activation of the alkyne in 23 should promote a cascade cyclization process to finally give the 8//-isochromen-8-one derivative 25. The formal [4-F 2]-cycloaddition reaction between intermediates 19 and 25 would result in the formation of the core structure of (—)-berkehc acid 24 in a very simple way (Scheme 7). [Pg.44]


See other pages where Alkynyl complexes 3 + 2 cycloaddition reactions is mentioned: [Pg.1070]    [Pg.1070]    [Pg.91]    [Pg.68]    [Pg.78]    [Pg.49]    [Pg.290]    [Pg.151]    [Pg.148]    [Pg.86]    [Pg.87]    [Pg.96]    [Pg.924]    [Pg.193]    [Pg.179]    [Pg.904]    [Pg.249]    [Pg.240]    [Pg.212]    [Pg.26]    [Pg.457]   


SEARCH



Alkynyl complexes

Cycloadditions complexes

Propene, 3-diazo cycloaddition reactions alkynyl carbene complexes

Reactions alkynylation

© 2024 chempedia.info