Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes sodium reduction

A similar synthesis of alkynes by reductive elimination of enol phosphates of /3-oxosulfones with sodium in liquid ammonia has been reported. ... [Pg.515]

Semireduction of internal alkynes in the presence of a transition metal catalyst (e.g., Ni2B, Pd/C) provides disubstituted cw-alkenes. On the other hand, dissolving metal reduction of alkynes or reduction of propargylic alcohols with LiAlH4 or with Red-Al [sodium bis(2-methoxyethoxy)aluminum hydride] furnishes tran -disubstituted alkenes. ... [Pg.366]

Terminal alkynes are only reduced in the presence of proton donors, e.g. ammonium sulfate, because the acetylide anion does not take up further electrons. If, however, an internal C—C triple bond is to be hydrogenated without any reduction of terminal, it is advisable to add sodium amide to the alkyne solution Hrst. On catalytic hydrogenation the less hindered triple bonds are reduced first (N.A. Dobson, 1955, 1961). [Pg.100]

A useful alternative to catalytic partial hydrogenation for converting alkynes to alkenes IS reduction by a Group I metal (lithium sodium or potassium) m liquid ammonia The unique feature of metal-ammonia reduction is that it converts alkynes to trans alkenes whereas catalytic hydrogenation yields cis alkenes Thus from the same alkyne one can prepare either a cis or a trans alkene by choosing the appropriate reaction conditions... [Pg.376]

FIGURE 9.4 Mechanism of the sodium-ammonia reduction of an alkyne. [Pg.376]

An alternative method for the conversion of an alkyne to an alkene uses sodium or lithium metal as the reducing agent in liquid ammonia as solvent. This method is complementary to the Lindlar reduction because it produces... [Pg.268]

The inertness of ordinary double bonds toward metallie hydrides is quite useful, since it permits reduction of, say, a carbonyl or nitro group, without disturbing a double bond in the same molecule (see Chapter 19 for a discussion of selectivity in reduction reactions). Sodium in liquid ammonia also does not reduce ordinary double bonds, although it does reduce alkynes, allenes, conjugated dienes, and aromatic rings (15-14). [Pg.1008]

We see from these examples that many of the carbon nucleophiles we encountered in Chapter 10 are also nucleophiles toward aldehydes and ketones (cf. Reactions 10-104-10-108 and 10-110). As we saw in Chapter 10, the initial products in many of these cases can be converted by relatively simple procedures (hydrolysis, reduction, decarboxylation, etc.) to various other products. In the reaction with terminal acetylenes, sodium acetylides are the most common reagents (when they are used, the reaction is often called the Nef reaction), but lithium, magnesium, and other metallic acetylides have also been used. A particularly convenient reagent is lithium acetylide-ethylenediamine complex, a stable, free-flowing powder that is commercially available. Alternatively, the substrate may be treated with the alkyne itself in the presence of a base, so that the acetylide is generated in situ. This procedure is called the Favorskii reaction, not to be confused with the Favorskii rearrangement (18-7). ... [Pg.1225]

Dissolving-Metal Reduction of Aromatic Compounds and Alkynes. Dissolving-metal systems constitute the most general method for partial reduction of aromatic rings. The reaction is called the Birch reduction,214 and the usual reducing medium is lithium or sodium in liquid ammonia. An alcohol is usually added to serve as a proton source. The reaction occurs by two successive electron transfer/proto-nation steps. [Pg.436]

Generally, cyclohexyne is an unstable molecule because of its ring strain. However, it can be stabilized by coordination to transition metals.35 The reduction of 1,2-dibromocyclohexene by sodium/mercury in the presence of a nickel-bromide complex afforded the Ni-alkyne complex 66 as a thermally stable and isolable compound (Scheme 22).36 Complex 66 smoothly reacted with C02 under atmospheric pressure to give nickelacycle 67 in good yield. Dimethyl acetylenedicarboxylate was inserted into the vinyl-nickel bond in 67 to give the seven-membered oxanickelacycle 68. [Pg.546]

CuO nanostructures of variable shapes CuO nanospheres (5-10 run), CuO nanorods (WXL = 24-27 nmxl24-140 run) and CuO nanowires (WXL= 8-10 nmx230-270 nm) have been synthesised to study the effect of shape of the catalyst on the Cu(I)-catalyzed click azide-alkyne cycloaddition. Cu(I) species were generated in situ by the reduction of CuO nanostructures in the presence of sodium... [Pg.80]

Tetramethyl- or tetraphenyl- (cyclobutadiene)nickel dihalides undergo reductive ligand substitution with nitrogen donor ligands such as 2,2 -bipyridine or 1,4-diaza-1,3-dienes with the addition of sodium metal237. The 2,2/-bipyridyl ligand is readily displaced and reaction of this complex with a variety of olefins and alkynes leads to cycloaddition reactions with the cyclobutadiene ligand. [Pg.969]

Hydrogenation using Raney nickel is carried out under mild conditions and gives cis alkenes from internal alkynes in yields ranging from 50 to 100% [356, 357, 358, 359, 360]. Half hydrogenation of alkynes was also achieved over nickel prepared by reduction of nickel acetate with sodium borohydride (P-2 nickel, nickel boride) [349,361,362] or by reduction with sodium hydride [49], or by reduction of nickel bromide with potassium-graphite [363]. Other catalysts are palladium on charcoal [364], on barium sulfate [365, 366], on... [Pg.43]

Reduction of alkynes with sodium in ammonia,147 lithium in low-molecular-weight amines,148 or sodium in hexamethylphosphoric triamide containing /-butanol as a proton source149 leads to the corresponding is-alkene. The reaction is assumed to involve successive electron-transfer and proton-transfer steps. [Pg.295]

The electron transfer to the acetylenic bond forms the frans-sodiovinyl radical 20 that, after protonation, produces tram radical 21. At low temperature (—33°C) in the presence of excess sodium, the conversion of the trans radical to sodiovinyl intermediate 22 is slightly more rapid than the conversion of the tram radical to the cis radical 23 (21 —> 22 > 22 —> 23). As a result, protonation yields predominantly the trans alkene. However, low sodium concentration and increased temperature lead to increasing proportion of the cis alkene. Although other dissolving-metal reductions are less thoroughly studied, a similar mechanism is believed to be operative.34 Another synthetically useful method for conversion of alkynes to trans alkenes in excellent yields is the reduction with CrS04 in aqueous dimethylforma-mide.198... [Pg.647]

Catalytic reduction of alkynes to ds-alkenes. This reduction is not possible with 10% Pd/C alone because this metal is too reactive and the alkane is formed readily. The selective reaction is possible if the Pd/C is deactivated by either Hg(0) or Pb(0), obtained by reduction of metal acetate with NaBH4. Sodium phosphinate, H2P02Na, is the preferred hydride donor. Since this donor is not soluble in the Organic solvents used, a phase-transfer catalyst, benzyltriethylammonium chloride, is added.3... [Pg.539]


See other pages where Alkynes sodium reduction is mentioned: [Pg.45]    [Pg.252]    [Pg.440]    [Pg.86]    [Pg.387]    [Pg.1025]    [Pg.133]    [Pg.316]    [Pg.226]    [Pg.26]    [Pg.683]    [Pg.113]    [Pg.66]    [Pg.193]    [Pg.44]    [Pg.97]    [Pg.98]    [Pg.948]    [Pg.456]    [Pg.440]    [Pg.254]    [Pg.207]    [Pg.133]    [Pg.488]   
See also in sourсe #XX -- [ Pg.555 ]




SEARCH



Alkynes reduction with sodium/ammonia

Alkynes reductions, sodium borohydride

Mechanism reduction of alkynes by sodium in ammonia

Reduction alkynes

Sodium, reduction

Sodium-Ammonia Reduction of an Alkyne

© 2024 chempedia.info