Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyne derivatives reactivity

This article is concerned with one specific aspect of cluster organometallic chemistry, and describes the synthesis, characterization, structure, and reactivity of transition metal clusters containing alkyne, or alkyne-derived ligands. Alkynes display a diverse reactivity in their reactions with carbonyl clusters, and exhibit a wider range of coordination modes than any other simple, unsaturated molecule. It is this compelling diversity that has prompted the authors to undertake this review. [Pg.170]

The reactivity of clusters containing coordinated alkyne or alkyne-derived ligands has not been widely investigated. This review has indicated that quite a significant number of complexes of this type have now been synthesized, but it is important to remember that quite a large proportion of these clusters are obtained in relatively low yield, and it is perhaps this aspect that has hindered further research into their reaction chemistry. However, over the last several years, an increasing number of publications reporting the reactions of alkyne-substituted... [Pg.226]

Acylzirconocene chloride derivatives are readily accessible in a one-pot procedure through the hydrozirconation of alkene or alkyne derivatives with zirconocene chloride hydride and subsequent insertion of carbon monoxide into the alkyl- or alkenyl-zirconocene bond under atmospheric pressure. The pioneering study on the preparation and reactivity of acylzirconocene dated back to the initial study of Schwartz [27] and revealed that an acyl group can be converted into a large variety of carboxylic acid derivatives (Scheme 12.22). [Pg.514]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

Hydroxy-THISs react with electron-deficient alkynes to give nonisol-able adducts that extrude carbonyl sulfide, affording pyrroles (23). Compound 16 (X = 0) seems particularly reactive (Scheme 16) (25). The cycloaddition to benzyne yields isoindoles in low- yield. Further cyclo-addition between isoindole and benzyne leads to an iminoanthracene as the main product (Scheme 17). The cycloadducts derived from electron-deficient alkenes are stable (23, 25) unless highly strained. Thus the two adducts, 18a (R = H, R = COOMe) and 18b (R = COOMe, R = H), formed from 7, both extrude furan and COS under the reaction conditions producing the pyrroles (19. R = H or COOMe) (Scheme 18). Similarly, the cycloadduct formed between 16 (X = 0) and dimethylfumarate... [Pg.9]

For alkyl-substituted alkynes, there is a difference in stereochemistry between mono-and disubstituted derivatives. The former give syn addition whereas the latter react by anti addition. The disubstituted (internal) compounds are considerably ( 100 times) more reactive than the monosubstituted (terminal) ones. This result suggests that the transition state of the rate-determining step is stabilized by both of the alkyl substituents and points to a bridged intermediate. This would be consistent with the overall stereochemistry of the reaction for internal alkynes. [Pg.374]

The alkynylation of estrone methyl ether with the lithium, sodium and potassium derivatives of propargyl alcohol, 3-butyn-l-ol, and propargyl aldehyde diethyl acetal in pyridine and dioxane has been studied by Miller. Every combination of alkali metal and alkyne tried, but one, gives the 17a-alkylated products (65a), (65c) and (65d). The exception is alkynylation with the potassium derivative of propargyl aldehyde diethyl acetal in pyridine at room temperature, which produces a mixture of epimeric 17-(3, 3 -diethoxy-T-propynyl) derivatives. The rate of alkynylation of estrone methyl ether depends on the structure of the alkyne and proceeds in the order propar-gylaldehyde diethyl acetal > 3-butyn-l-ol > propargyl alcohol. The reactivity of the alkali metal salts is in the order potassium > sodium > lithium. [Pg.68]

Alkynes substituted with one or two trifluoromethyl groups are also highly reactive dienophiles [9] Indeed, hexafluoro-2-butyne is used increasingly as a definitive acetylenic dienophile in "difficult Diels-Alder reactions. It was used, for example, to prepare novel inside-outside bicycloalkanes via its reaction with cir,trnns -l,3-undecadiene [74] (equation 67) and to do a tandem Diels-Alder reaction with a l,l-bis(pyrrole)methane [75] (equation 68) Indeed, its reactions with pyrrole derivatives and furan have been used in the syntheses of 3,4-bis(tri-fluoromethyl)pyrrole [76, 77] (equation 69) and ],4-bis(trifluoromethyl)benzene-2,3-oxide [78] (equation 70), respectively. [Pg.819]

Two new sections on the protection of phosphates and the alkyne-CH are included. All other sections of the book have been expanded, some more than others. The section on the protection of alcohols has increased substantially, reflecting the trend of the nineties to synthesize acetate- and propionate-derived natural products. An effort was made to include many more enzymatic methods of protection and deprotection. Most of these are associated with the protection of alcohols as esters and the protection of carboxylic acids. Here we have not attempted to be exhaustive, but hopefully, a sufficient number of cases are provided that illustrate the true power of this technology, so that the reader will examine some of the excellent monographs and review articles cited in the references. The Reactivity Charts in Chapter 10 are identical to those in the first edition. The chart number appears beside the name of each protective group when it is first introduced. No attempt was made to update these Charts, not only because of the sheer magnitude of the task, but because it is nearly impossible in... [Pg.785]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

The 2n component 2, the so-called dipolarophile (analogously to the dieno-phile of the Diels-Alder reaction) can be an alkene or alkyne or a heteroatom derivative thereof. Generally those substrates will be reactive as dipolarophiles, that also are good dienophiles. [Pg.75]

The insertion of alkynes into a chromium-carbon double bond is not restricted to Fischer alkenylcarbene complexes. Numerous transformations of this kind have been performed with simple alkylcarbene complexes, from which unstable a,/J-unsaturated carbene complexes were formed in situ, and in turn underwent further reactions in several different ways. For example, reaction of the 1-me-thoxyethylidene complex 6a with the conjugated enyne-ketimines and -ketones 131 afforded pyrrole [92] and furan 134 derivatives [93], respectively. The alkyne-inserted intermediate 132 apparently undergoes 671-electrocyclization and reductive elimination to afford enol ether 133, which yields the cycloaddition product 134 via a subsequent hydrolysis (Scheme 28). This transformation also demonstrates that Fischer carbene complexes are highly selective in their reactivity toward alkynes in the presence of other multiple bonds (Table 6). [Pg.44]

Particularly interesting are the results obtained with the phosphonium ylides including an acyl rest derived from aminoacid if the N-H bond reactivity is blocked by an amide protection, the alkyne formation takes place [25,27], but if the N-H bond is not deactivated, an intramolecular cyclization occurs to give a new stabilized ylide [27,28]. [Pg.45]

The reactivity of OsHCl(CO)(P Pr3)2 toward alkynes depends on the type of alkyne used. Whereas phenylacetylene, propyne, and acetylene react by insertion to give the five-coordinate alkenyl derivatives Os ( >CI I=CHR Cl(CO)(PIPr3)2 (R = Ph, Me, H),31,33 the reaction with methylpropiolate affords a mixture of Os C(=CH2)C(OMe)0 Cl(CO)(P,Pr3)2 and 0s ( )-CH=CHC02Me Cl(C0) (P Pr3)234 (Scheme 3), and tert-butyl acetylene and diphenylacetylene are inert. [Pg.7]


See other pages where Alkyne derivatives reactivity is mentioned: [Pg.471]    [Pg.1116]    [Pg.87]    [Pg.386]    [Pg.79]    [Pg.768]    [Pg.349]    [Pg.230]    [Pg.188]    [Pg.3302]    [Pg.134]    [Pg.938]    [Pg.3301]    [Pg.101]    [Pg.171]    [Pg.195]    [Pg.112]    [Pg.156]    [Pg.71]    [Pg.81]    [Pg.164]    [Pg.311]    [Pg.313]    [Pg.142]    [Pg.376]    [Pg.155]    [Pg.221]    [Pg.167]    [Pg.106]    [Pg.108]    [Pg.21]    [Pg.532]    [Pg.18]    [Pg.32]    [Pg.32]   
See also in sourсe #XX -- [ Pg.536 , Pg.537 , Pg.538 , Pg.539 ]




SEARCH



Alkynes : derivatives

Alkynes reactivity

© 2024 chempedia.info