Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyne complexes catalytic activity

The guanidinate-supported titanium imido complex [Me2NC(NPr02l2Ti = NAr (Ar = 2,6-Me2C6H3) (cf. Section IILB.2) was reported to be an effective catalyst for the hydroamination of alkynes. The catalytic activity of bulky amidinato bis(alkyl) complexes of scandium and yttrium (cf. Section III.B.l) in the intramolecular hydroamination/cyclization of 2,2-dimethyl-4-pentenylamine has been investigated and compared to the activity of the corresponding cationic mono(alkyl) derivatives. [Pg.336]

Hexacarbonyldicobalt complexes of alkynes have served as substrates in a variety of olefin metathesis reactions. There are several reasons for complex-ing an alkyne functionality prior to the metathesis step [ 125] (a) the alkyne may chelate the ruthenium center, leading to inhibition of the catalytically active species [125d] (b) the alkyne may participate in the metathesis reaction, giving undesired enyne metathesis products [125f] (c) the linear structure of the alkyne may prevent cyclization reactions due to steric reasons [125a-d] and (d) the hexacarbonylcobalt moiety can be used for further transformations [125c,f]. [Pg.260]

Reduction of unsaturated organic substrates such as alkenes, alkynes, ketones, and aldehydes by molecular dihydrogen or other H-sources is an important process in chemistry. In hydrogenation processes some iron complexes have been demonstrated to possess catalytic activity. Although catalytic intermediates have rarely been defined, the Fe-H bond has been thought to be involved in key intermediates. [Pg.30]

The strong o-donor property of NHC ligands enhances the catalytic activity in [3+2] cycloaddition by promoting the activation of internal alkynes (i.e. 26), which proceeds by the formation of a ti-alkyne complex 25 (Scheme 5.7). [Pg.136]

The authors confirmed the formation of vinyl Ru-complex 21 by the reaction of [Cp Ru(SBu-t)]2 with methyl propiolate (Eq. 7.15). To my knowledge, this is the first observation of the insertion of an alkyne into the M-S bond within a catalytically active metal complex. In 2000, Gabriele et al. reported the Pd-catalyzed cycloisomerization of (Z)-2-en-4-yne-l-thiol affording a thiophene derivative 22 (Eq. 7.16) [26]. [Pg.222]

The mechanism of [3 + 2] reductive cycloadditions clearly is more complex than other aldehyde/alkyne couplings since additional bonds are formed in the process. The catalytic reductive [3 + 2] cycloaddition process likely proceeds via the intermediacy of metallacycle 29, followed by enolate protonation to afford vinyl nickel species 30, alkenyl addition to the aldehyde to afford nickel alkoxide 31, and reduction of the Ni(II) alkoxide 31 back to the catalytically active Ni(0) species by Et3B (Scheme 23). In an intramolecular case, metallacycle 29 was isolated, fully characterized, and illustrated to undergo [3 + 2] reductive cycloaddition upon exposure to methanol [45]. Related pathways have recently been described involving cobalt-catalyzed reductive cyclo additions of enones and allenes [46], suggesting that this novel mechanism may be general for a variety of metals and substrate combinations. [Pg.27]

Complexes (65) and (66) result from the reaction of IrCl3 with inah and PPh3 (inah = isonicotinic acid hydrazide).92 Reaction of Troger s base (tb) (67) with IrCl3 yields dark violet tb 2IrCl3 (6S).93 (68) was not catalytically active towards the hydrosilylation of alkynes. [Pg.160]

In hydrogenation, early transition-metal catalysts are mainly based on metallocene complexes, and particularly the Group IV metallocenes. Nonetheless, Group III, lanthanide and even actinide complexes as well as later metals (Groups V-VII) have also been used. The active species can be stabilized by other bulky ligands such as those derived from 2,6-disubstituted phenols (aryl-oxy) or silica (siloxy) (vide infra). Moreover, the catalytic activity of these systems is not limited to the hydrogenation of alkenes, but can be used for the hydrogenation of aromatics, alkynes and imines. These systems have also been developed very successfully into their enantioselective versions. [Pg.113]

Oligomerization and polymerization of terminal alkynes may provide materials with interesting conductivity and (nonlinear) optical properties. Phenylacetylene and 4-ethynyltoluene were polymerized in water/methanol homogeneous solutions and in water/chloroform biphasic systems using [RhCl(CO)(TPPTS)2] and [IrCl(CO)(TPPTS)2] as catalysts [37], The complexes themselves were rather inefficient, however, the catalytic activity could be substantially increased by addition of MesNO in order to remove the carbonyl ligand from the coordination sphere of the metals. The polymers obtained had an average molecular mass of = 3150-16300. The rhodium catalyst worked at room temperature providing polymers with cis-transoid structure, while [IrCl(CO)(TPPTS)2] required 80 °C and led to the formation of frani -polymers. [Pg.202]

The [Ir(cod)2]BARF complex also showed high catalytic activity in the hydrogena-tive coupling of alkyne with aldimines to lead to reductive couphng products, aUyl amines [69]. [Pg.270]

Similar to the CuOTf/PyBox system, the CuBr/QUINAP system also gave high enantioselectivities of the three component reactions to construct propargyl amines from aldehydes, amines, and alkynes (Scheme 5.6). In this system various aldehydes including aromatic aldehydes and aliphatic aldehydes could be used and a wide range of chiral propargyl amines were prepared in good yields and enantioselectivities. Mechanistic studies showed that the dimeric Cu/QUINAP complex is the catalytically active species that differs from the previous reaction. [Pg.133]

The reaction rate of enyne 107j having a terminal alkyne is very slow, and the starting material is recovered [Eq. (6.80)]. ° Presumably, the terminal alkene of the product 108j should further react with ruthenium carbene complex Ih to form XVII, whose ruthenium carbene should be coordinated by the olefin in the pyrrolidine ring. Thus, the catalytic activity of Ih should be decreased. If complex XVII reacts with ethylene, 108j and methylidene ruthenium carbene complex Ih should be regenerated. On the basis of this idea, the reaction was carried out under ethylene... [Pg.183]

As described in this chapter, vinylidene complexes of Group 6 metals have been utilized for the preparation of various synthetically useful compounds through electrophilic activation or electrocyclization of terminal alkyne derivatives. These intermediates are quite easily generated from terminal alkynes and M(CO)6, mostly by photo-irradiation and will have abundant possibilities for the catalytic activation of terminal alkynes. Furthermore, it should be emphasized that one of the most notable characteristic features of the vinylidene complexes of Group 6 metals is their dynamic equilibrium with the it-alkyne complex. Control of such an equilibrium would bring about new possibilities for unique metal catalysis in synthetic reactions. [Pg.187]

Lee s group has also reported ruthenium-catalyzed carbonylative cyclization of 1,6-diynes. The noteworthy aspect of this cyclization is the unprecedented anti nucleophile attack on a 7i-alkyne complex bearing a ruthenium vinylidene functionality. A catalytic system based on [Ru(p-cymene)Cl2]2/P(4-F-C6H4)3/DMAP was active for the cyclization of 1,6-diyne 103 and benzoic acid in dioxane at 65 °Cto afford cydohexenylidene enol ester 104a in 74% yield after 24h [34]. Additional examples are shown in Scheme 6.35. [Pg.213]

Quite recently, some mononuclear ruthenium complexes such as [(p-cymene)RuX-(CO)(PR3)]OTf (X = Cl, OTf, R = Ph, Cy) have been found to work as catalysts for the propargylation of aromatic compounds such as furans, where some ruthenium complexes were isolated as catalytically active species from the stoichiometric reactions of propargylic alcohols (Scheme 7.27) [31]. The produced active species promoted the propargylation of furans vdth propargylic alcohols bearing not only a terminal alkyne moiety but also an internal alkyne moiety, indicating that this propargylation does not proceed via allenylidene complexes as key intermediates. [Pg.234]

The formation of a ruthenium vinylidene is proposed as the key intermediate in the regioselective addition of hydrazine to terminal alkynes [55]. This reaction, which proceeds via addition of the primary amino group of a 1,1-disubstituted hydrazine followed by deamination, provides an unprecedented access to a variety of aromatic and aliphatic nitriles. The tris(pyrazolyl)borate complex RuCl(Tp)(PPh3)2 gave the best catalytic activity in the absence of any chloride abstractor (Scheme 10.17). [Pg.325]

To identify the truly active species for the alkyne metathesis, various experiments are carried out for ring-closing alkyne metathesis of diynes (Table 5). Activation of complex 140 with CH2CI2 and evaporation of all the volatiles is shown to yield Mo[N(Ar)( Bu)]3Cl 141a and alkylidyne complex 141c as major components. The former complex 141a, that is also accessible by treatment of 140 with CI2 (Equation (24)), had an equal catalytic activity (entry 6), but... [Pg.305]

The latter transformation requires the use of a small amount of an acid or its ammonium salt. By using [Cp2TiMe2] as the catalyst, primary anilines as well as steri-cally hindered tert-alkyl- and sec-alkylamines can be reacted.596 Hydroamination with sterically less hindered amines are very slow. This was explained by a mechanism in which equlibrium between the catalytically active [L1L2Ti=NR] imido complex and ist dimer for sterically hindered amines favors a fast reaction. Lantha-nade metallocenes catalyze the regiospecific addition of primary amines to alkenes, dienes, and alkynes.598 The rates, however, are several orders of magnitude lower than those of the corresponding intramolecular additions. [Pg.341]


See other pages where Alkyne complexes catalytic activity is mentioned: [Pg.379]    [Pg.161]    [Pg.205]    [Pg.220]    [Pg.69]    [Pg.114]    [Pg.1056]    [Pg.52]    [Pg.247]    [Pg.285]    [Pg.128]    [Pg.153]    [Pg.155]    [Pg.45]    [Pg.767]    [Pg.791]    [Pg.208]    [Pg.211]    [Pg.376]    [Pg.379]    [Pg.390]    [Pg.1337]    [Pg.379]    [Pg.194]    [Pg.122]    [Pg.278]    [Pg.208]    [Pg.66]    [Pg.225]    [Pg.142]    [Pg.178]    [Pg.674]    [Pg.712]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Alkyne catalytic activities

Alkyne complexe

Alkyne complexes

Alkynes activated

Alkynes activation

Catalytic alkyne

Complex , catalytic

Complexes catalytic activity

© 2024 chempedia.info