Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation Reactions Electrophilic Addition

As indicated above, the C5 isoprene unit in the form of dimethylallyl diphosphate (DMAPP) [Pg.13]

Alkylation reactions electrophilic addition (a) inter- and intra-molecular additions [Pg.14]


Aikene chemistry is dominated by electrophilic addition reactions. When HX reacts with an unsymmetrically substituted aikene, Markovnikov s rule predicts that the H will add to the carbon having fewer alky) substituents and the X group will add to the carbon having more alkyl substituents. Electrophilic additions to alkenes take place through carbocation intermediates formed by reaction of the nucleophilic aikene tt bond with electrophilic H+. Carbocation stability follows the order... [Pg.204]

In this review, we will initially describe the role of Bi(III) salts as activators for a-donors. In particular, benzyl and propargyl alcohols will be presented as mild electrophiles in alkylation reactions. In addition, we will show the versatility of Bi(III) salts and give a short overview of Bi(III)-catalyzed hydroarylation and hydroalkynylation reactions [23]. Besides our own results, which primarily focus... [Pg.117]

We can extend the general principles of electrophilic addition to acid catalyzed hydration In the first step of the mechanism shown m Figure 6 9 proton transfer to 2 methylpropene forms tert butyl cation This is followed m step 2 by reaction of the car bocation with a molecule of water acting as a nucleophile The aUcyloxomum ion formed m this step is simply the conjugate acid of tert butyl alcohol Deprotonation of the alkyl oxonium ion m step 3 yields the alcohol and regenerates the acid catalyst... [Pg.247]

Problem 6.18 What about the second step in the electrophilic addition of HCl to an alkene—the reaction of chloride ion with the carbocation intermediate Is this step exergonic or endergontc Does the transition state for this second step resemble the reactant (carbocation) or product (alkyl chloride) Make a rough drawing of what the transition-state structure might look like. [Pg.199]

Evidence in support of a carbocation mechanism for electrophilic additions comes from the observation that structural rearrangements often take place during reaction. Rearrangements occur by shift of either a hydride ion, H (a hydride shift), or an alkyl anion, R-, from a carbon atom to the adjacent positively charged carbon. The result is isomerization of a less stable carbocation to a more stable one. [Pg.204]

Markovnikov s rule (Section 6.8) A guide for determining the regiochemistry (orientation) of electrophilic addition reactions. In the addition of HX to an alkene, the hydrogen atom bonds to the alkene carbon thal has fewer alkyl substituents. [Pg.1245]

Alkyl substituents accelerate electrophilic addition reactions of alkenes and retard nucleophilic additions to carbonyl compounds. The bonding orbital of the alkyl groups interacts with the n bonding orbital, i.e., the HOMO of alkenes and raises the energy (Scheme 22). The reactivity increases toward electron acceptors. The orbital interacts with jt (LUMO) of carbonyl compounds and raises the energy (Scheme 23). The reactivity decreases toward electron donors. [Pg.16]

Figure 1.11 Tyrosine residues are subject to nucleophilic and electrophilic reactions. The unprotonated phe-nolate ion may be alkylated or acylated using a variety of bioconjugate reagents. Its aromatic ring also may undergo electrophilic addition using diazonium chemistry or Mannich condensation, or be halogenated with radioactive isotopes such as 12iI. Figure 1.11 Tyrosine residues are subject to nucleophilic and electrophilic reactions. The unprotonated phe-nolate ion may be alkylated or acylated using a variety of bioconjugate reagents. Its aromatic ring also may undergo electrophilic addition using diazonium chemistry or Mannich condensation, or be halogenated with radioactive isotopes such as 12iI.
An unexpected reaction occurs when 2-alkyl-4(5)-nitroimidazoles (27 R = alkyl) are reduced in protic solvents [92JCS(P1)2779]. Catalytic hydrogenation of 2-methyl-4(5)-nitroimidazole (27 R = Me) in a solution of acetic anhydride and acetic acid gave 4,4 -diacetamido-2,2 -dimethyl-5,5 -diimidazole (32 yield 10%) in addition to the expected 4-acetamido-l-acetyl-2-methylimidazole (28%). Similarly, reduction of the 2-alkyl-4(5)-nitroimidazoles (27 R = Me, Et, iPr) in ethanol solution in the presence of diethyl ethoxymethylenemalonate [EMME (135)] gives predominantly the 5,5 -diimidazole adducts (33). The formation of these products (33) is believed to involve an electrophilic addition of the starting material (27) to the electron-rich aminoimidazoles (25) [92JCS(P1)2779]. Interestingly, replacement of ethanol by dioxane suppressed diimidazole formation. [Pg.8]

The prime functional group for constructing C-C bonds may be the carbonyl group, functioning as either an electrophile (Eq. 1) or via its enolate derivative as a nucleophile (Eqs. 2 and 3). The objective of this chapter is to survey the issue of asymmetric inductions involving the reaction between enolates derived from carbonyl compounds and alkyl halide electrophiles. The addition of a nucleophile toward a carbonyl group, especially in the catalytic manner, is presented as well. Asymmetric aldol reactions and the related allylation reactions (Eq. 3) are the topics of Chapter 3. Reduction of carbonyl groups is discussed in Chapter 4. [Pg.71]

While a large number of studies have been reported for conjugate addition and Sn2 alkylation reactions, the mechanisms of many important organocopper-promoted reactions have not been discussed. These include substitution on sp carbons, acylation with acyl halides [168], additions to carbonyl compounds, oxidative couplings [169], nucleophilic opening of electrophilic cyclopropanes [170], and the Kocienski reaction [171]. The chemistry of organocopper(II) species has rarely been studied experimentally [172-174], nor theoretically, save for some trapping experiments on the reaction of alkyl radicals with Cu(I) species in aqueous solution [175]. [Pg.338]


See other pages where Alkylation Reactions Electrophilic Addition is mentioned: [Pg.13]    [Pg.13]    [Pg.270]    [Pg.115]    [Pg.273]    [Pg.599]    [Pg.370]    [Pg.188]    [Pg.193]    [Pg.338]    [Pg.339]    [Pg.556]    [Pg.1289]    [Pg.6]    [Pg.53]    [Pg.473]    [Pg.156]    [Pg.183]    [Pg.315]    [Pg.248]    [Pg.219]    [Pg.475]    [Pg.168]    [Pg.568]    [Pg.129]   


SEARCH



Addition alkylation

Addition reactions electrophilic

Alkyl addition reactions

Alkylation alkyl electrophiles

Alkylation, enolate ions electrophilic addition reactions

Alkylative addition

Electrophiles Addition reactions

Electrophiles alkylation

Electrophilic addition reactions Friedel-Crafts alkylation

Electrophilic alkylation

Electrophilic reactions alkylation

© 2024 chempedia.info