Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides protonation

Note This reaction involves a polar acidic mechanism, not a free-radical mechanism It is a Friedel-Crafts alkylation, with the slight variation that the requisite carbocation is made by protonation of an alkene instead of ionization of an alkyl halide. Protonation of C4 gives a C3 carbocation. Addition to Cl and fragmentation gives the product. [Pg.125]

Scheme 13), the cyclic analog of (25), gives a-products upon treatment with alkyl halides, protons or sterically unhindered aldehydes, whereas it affords y-adducts upon treatment with bulkier electrophiles such as pivaloyl chloride and benzaldehyde. ... [Pg.63]

NaOCHjCHa. White solid (Na in EtOH). Decomposed by water, gives ethers with alkyl halides reacts with esters. Used in organic syntheses particularly as a base to remove protons adjacent to carbonyl or sulphonyl groups to give resonance-stabilized anions. [Pg.364]

The proton of terminal acetylenes is acidic (pKa= 25), thus they can be deprotonated to give acetylide anions which can undergo substitution reactions with alkyl halides, carbonyls, epoxides, etc. to give other acetylenes. [Pg.115]

In Chapter 4 you learned that carbocations could be captured by halide anions to give alkyl halides In the present chapter a second type of carbocation reaction has been introduced—a carbocation can lose a proton to form an alkene In the next section a third aspect of carbocation behavior will be described the rearrangement of one carbo cation to another... [Pg.208]

Dehydrohalogenation of alkyl halides (Sections 5 14-5 16) Strong bases cause a proton and a halide to be lost from adjacent carbons of an alkyl halide to yield an alkene Regioselectivity is in accord with the Zaitsev rule The order of halide reactivity is I > Br > Cl > F A concerted E2 reaction pathway is followed carbocations are not involved and rearrangements do not occur An anti coplanar arrangement of the proton being removed and the halide being lost characterizes the transition state... [Pg.222]

Section 5 15 Dehydrohalogenation of alkyl halides by alkoxide bases is not compli cated by rearrangements because carbocations are not intermediates The mechanism is E2 It is a concerted process m which the base abstracts a proton from the p carbon while the bond between the halogen and the a carbon undergoes heterolytic cleavage... [Pg.223]

A proton and a halogen add to the double bond of an alkene to yield an alkyl halide Addition proceeds in ac cordance with Markovnikov s rule hy drogen adds to the carbon that has the greater number of hydrogens halide to the carbon that has the fewer hydro gens... [Pg.272]

Because electrophilic attack on benzene is simply another reaction available to a carbocation other carbocation precursors can be used m place of alkyl halides For exam pie alkenes which are converted to carbocations by protonation can be used to alkyl ate benzene... [Pg.483]

Dehydrohalogenation (Section 5 14) Reaction in which an alkyl halide on being treated with a base such as sodium ethoxide is converted to an alkene by loss of a proton from one carbon and the halogen from the adjacent carbon... [Pg.1281]

Enby 6 is an example of a stereospecific elimination reaction of an alkyl halide in which the transition state requires die proton and bromide ion that are lost to be in an anti orientation with respect to each odier. The diastereomeric threo- and e/ytAra-l-bromo-1,2-diphenyl-propanes undergo )3-elimination to produce stereoisomeric products. Enby 7 is an example of a pyrolytic elimination requiring a syn orientation of die proton that is removed and the nitrogen atom of the amine oxide group. The elimination proceeds through a cyclic transition state in which the proton is transferred to die oxygen of die amine oxide group. [Pg.100]

We have previously seen (Scheme 2.9, enby 6), that the dehydrohalogenation of alkyl halides is a stereospecific reaction involving an anti orientation of the proton and the halide leaving group in the transition state. The elimination reaction is also moderately stereoselective (Scheme 2.10, enby 1) in the sense that the more stable of the two alkene isomers is formed preferentially. Both isomers are formed by anti elimination processes, but these processes involve stereochemically distinct hydrogens. Base-catalyzed elimination of 2-iodobutane affords three times as much -2-butene as Z-2-butene. [Pg.100]

The Friedel-Crafts reaction is a very important method for introducing alkyl substituents on an aromatic ring. It involves generation of a carbocation or related electrophilic species. The most common method of generating these electrophiles involves reaction between an alkyl halide and a Lewis acid. The usual Friedel-Crafts catalyst for preparative work is AICI3, but other Lewis acids such as SbFj, TiC, SnCl4, and BF3 can also promote reaction. Alternative routes to alkylating ecies include protonation of alcohols and alkenes. [Pg.580]

FIGURE 8.11 When a Lewis base reacts with an alkyl halide, either substitution or elimination can occur. Substitution (Sn2) occurs when the Lewis base acts as a nucleophile and attacks carbon to displace bromide. Elimination (E2) occurs when the Lewis base abstracts a proton from the p carbon. The alkyl halide shown is isopropyl bromide, and elimination (E2) predominates over substitution with alkox-ide bases. [Pg.349]

Two kinds of starting materials have been examined in nucleophilic substitution reactions to this point. In Chapter 4 we saw that alcohols can be converted to alkyl halides by reaction with hydrogen halides and pointed out that this process is a nucleophilic substitution taking place on the protonated fonm of the alcohol, with water serving as the... [Pg.350]

Organolithium compounds are sometimes prepared in hydrocarbon solvents such as pentane and hexane, but nonnally diethyl ether is used. It is especially important that the solvent be anhydrous. Even trace amounts of water or alcohols react with lithium to form insoluble lithium hydroxide or lithium alkoxides that coat the surface of the metal and prevent it from reacting with the alkyl halide. Furthennore, organolithium reagents are strong bases and react rapidly with even weak proton sources to fonn hydrocarbons. We shall discuss this property of organolithium reagents in Section 14.5. [Pg.590]

The anion produced by proton abstraction from ethyl acetoacetate is nucleophilic. Adding an alkyl halide to a solution of the sodium salt of ethyl acetoacetate leads to alkylation of the a carbon. [Pg.894]

Elimination bimolecular (E2) mechanism (Section 5.15) Mechanism for elimination of alkyl halides characterized by a transition state in which the attacking base removes a proton at the same time that the bond to the halide leaving group is broken. [Pg.1282]

The initial step is the coordination of the alkyl halide 2 to the Lewis acid to give a complex 4. The polar complex 4 can react as electrophilic agent. In cases where the group R can form a stable carbenium ion, e.g. a tert-buiyX cation, this may then act as the electrophile instead. The extent of polarization or even cleavage of the R-X bond depends on the structure of R as well as the Lewis acid used. The addition of carbenium ion species to the aromatic reactant, e.g. benzene 1, leads to formation of a cr-complex, e.g. the cyclohexadienyl cation 6, from which the aromatic system is reconstituted by loss of a proton ... [Pg.120]

Triphenylphosphine reacts with alkyl halides to form alkyltriphenylphosphonium salts. Upon reaction with strong bases, the salts release a proton to form an ylide (alkylidenetriphenylphosphorane), which is capable of reacting with aldehydes or ketones providing an unambiguous route to olefins. Since there are virtually no... [Pg.104]


See other pages where Alkyl halides protonation is mentioned: [Pg.180]    [Pg.180]    [Pg.234]    [Pg.180]    [Pg.180]    [Pg.234]    [Pg.116]    [Pg.214]    [Pg.238]    [Pg.590]    [Pg.594]    [Pg.1282]    [Pg.18]    [Pg.883]    [Pg.888]    [Pg.286]    [Pg.293]    [Pg.726]    [Pg.214]    [Pg.238]    [Pg.594]    [Pg.102]    [Pg.143]    [Pg.67]    [Pg.352]    [Pg.353]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Alkylation proton

© 2024 chempedia.info