Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides halide ions + carbocations

Partial but not complete loss of optical activity m S l reactions probably results from the carbocation not being completely free when it is attacked by the nucleophile Ionization of the alkyl halide gives a carbocation-hahde ion pair as depicted m Figure 8 8 The halide ion shields one side of the carbocation and the nucleophile captures the carbocation faster from the opposite side More product of inverted configuration is formed than product of retained configuration In spite of the observation that the products of S l reactions are only partially racemic the fact that these reactions are not stereospecific is more consistent with a carbocation intermediate than a concerted bimolecular mechanism... [Pg.343]

Unbranched primary alcohols and tertiary alcohols tend to react with hydrogen halides without rearrangement The alkyloxonmm ions from primary alcohols react rap idly with bromide ion for example m an Sn2 process Tertiary alcohols give tertiary alkyl halides because tertiary carbocations are stable and show little tendency to rearrange... [Pg.355]

Substitution nucleophilic unimolecular(SNl) mechanism (Sec tions 4 9 and 8 8) Mechanism for nucleophilic substitution charactenzed by a two step process The first step is rate determining and is the ionization of an alkyl halide to a carbocation and a halide ion... [Pg.1294]

The first reaction provides a route for the reduction of alkyl halides since the carbocation (isopropyl, in Rl) may be prepared from action of AICI3 on the corresponding alkyl halide. Reactions of the type Rl are also important in the process, catalytic cracking, in the manufacture of gasoline. They have also been studied in mass spectro-metric experiments [235]. Reaction R2 is one route to the preparation of carbocations under stable ion conditions. Reaction R3 is employed in the laboratory synthesis of the tropylium cation. Reaction R4, the (crossed) Cannizzaro reaction, is unusual in that it takes place under strongly basic conditions. The oxy dianion is an intermediate in the reaction of concentrated hydroxide with the aldehyde, R CHO. None of R R, or R may have hydrogen atoms a to the carbonyl groups. Formaldehyde (R = H) is readily... [Pg.146]

The alkyl halide m this case 2 bromo 2 methylbutane ionizes to a carbocation and a halide anion by a heterolytic cleavage of the carbon-halogen bond Like the dissoci ation of an aUcyloxonmm ion to a carbocation this step is rate determining Because the rate determining step is ummolecular—it involves only the alkyl halide and not the base—It is a type of El mechanism... [Pg.218]

There is a strong similarity between the mechanism shown m Eigure 5 12 and the one shown for alcohol dehydration m Eigure 5 6 The mam difference between the dehy dration of 2 methyl 2 butanol and the dehydrohalogenation of 2 bromo 2 methylbutane IS the source of the carbocation When the alcohol is the substrate it is the correspond mg alkyloxonmm ion that dissociates to form the carbocation The alkyl halide ionizes directly to the carbocation... [Pg.219]

Step 1 The alkyl halide dissociates to a carbocation and a halide ion... [Pg.340]

One-electron oxidation of carboxylate ions generates acyloxy radicals, which undergo decarboxylation. Such electron-transfer reactions can be effected by strong one-electron oxidants, such as Mn(HI), Ag(II), Ce(IV), and Pb(IV) These metal ions are also capable of oxidizing the radical intermediate, so the products are those expected from carbocations. The oxidative decarboxylation by Pb(IV) in the presence of halide salts leads to alkyl halides. For example, oxidation of pentanoic acid with lead tetraacetate in the presence of lithium chloride gives 1-chlorobutane in 71% yield ... [Pg.726]

One way of determining carbocation stabilities is to measure the amount of energy required to form the carbocation by dissociation of the corresponding alkyl halide, R-X - R+ + X . As shown in Figure 6.10, tertiary alkyl halides dissociate to give carbocations more easily than secondary or primary ones. As a result, trisubstituted carbocations are more stable than disubstituted ones, which are more stable than monosubstituted ones. The data in Figure 6.10 are taken from measurements made in the gas phase, but a similar stability order is found for carbocations in solution. The dissociation enthalpies are much lower in solution because polar solvents can stabilize the ions, but the order of carbocation stability remains the same. [Pg.195]

Tertiary alkyl halides, JR3CX, undergo spontaneous dissociation to yield a carbocation, K3C+, plus halide ion. Which do you think reacts faster, (CH3)3CBt or H2C=CHC(CH3)2Br Explain. [Pg.358]

Jn light of the fact that tertiary alkyl halides undergo spontaneous dissociation to yield a carbocation plus halide ion (Problem 10.40) propose a mechanism for the following reaction ... [Pg.358]

Note that in the S l reaction, which is often carried out under acidic conditions, neutral water can act as a leaving group. This occurs, for example, when an alkyl halide is prepared from a tertiary alcohol by reaction with HBr or HC1 (Section 10.6). The alcohol is first protonated and then spontaneously loses H2O to generate a carbocation, which reacts with halide ion to give the alkyl halide (Figure 11.13). Knowing that an SN1 reaction is involved in the conversion of alcohols to alkyl halides explains why the reaction works well only for tertiary alcohols. Tertiary alcohols react fastest because they give the most stable carbocation intermediates. [Pg.378]

The mechanism of these reactions is usually Sn2 with inversion taking place at a chiral RX, though there is strong evidence that an SET mechanism is involved in certain cases, ° especially where the nucleophile is an a-nitro carbanion and/or the substrate contains a nitro or cyano group. Tertiary alkyl groups can be introduced by an SnI mechanism if the ZCH2Z compound (not the enolate ion) is treated with a tertiary carbocation generated in situ from an alcohol or alkyl halide and BF3 or AlCla, or with a tertiary alkyl perchlorate. ... [Pg.550]

Reference has already been made in the last chapter to the generation of carbocations, in ion pairs, as intermediates in some displacement reactions at a saturated carbon atom, e.g. the solvolysis of an alkyl halide via the SN1 mechanism. Carbocations are, however, fairly widespread in occurrence and, although their existence is often only transient, they are of considerable importance in a wide variety of chemical reactions. [Pg.101]

So the tertiary halide reacts by a different mechanism, which we call SnI- It s still a nucleophilic substitution reaction (hence the S and the N ) but this time it is a unimolecular reaction, hence the 1 . The rate-determining step during reaction is the slow unimolecular dissociation of the alkyl halide to form a bromide ion and a carbocation that is planar around the reacting carbon. [Pg.395]

We have recently shown that metal-exchanged zeolites give rise to carbocationic reactions, through the interactions with alkylhalides (metal cation acts as Lewis acid sites, coordinating with the alkylhalide to form a metal-halide species and an alkyl-aluminumsilyl oxonium ion bonded to the zeolite structure, which acts as an adsorbed carbocation (scheme 2). We were able to show that they can catalyze Friedel-Crafts reactions (9) and isobutane/2-butene alkylation (70), with a superior performance than a protic zeolite catalyst. [Pg.268]

The carbon atom of alkyl halides, R—Hal, is electrophilic, but rarely is it sufficiently so to effect the substitution of aromatic species the presence of a Lewis acid catalyst, e.g. AlHalj is also required. That alkyl halides do react with Lewis acids has been demonstrated by the exchange of radioactive bromine into EtBr from AlBr on mixing and re-isolation also the actual isolation of solid 1 1 complexes, e.g. CHjBr-AlBrj, at low temperatures (-78°). These complexes, though polar, are only faintly conducting. Where R is capable of forming a particularly stable carbocation, e.g. with McsC—Br, it is probable that the attacking electrophile in alkylation is then the actual carbocation, Me3C , as part of an ion pair ... [Pg.285]


See other pages where Alkyl halides halide ions + carbocations is mentioned: [Pg.167]    [Pg.179]    [Pg.346]    [Pg.286]    [Pg.179]    [Pg.460]    [Pg.711]    [Pg.141]    [Pg.249]    [Pg.154]    [Pg.141]    [Pg.31]    [Pg.699]    [Pg.130]    [Pg.367]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Alkylation carbocation

Carbocations alkyl halides

Carbocations alkylation

Carbocations halide

Halide ions

© 2024 chempedia.info