Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl groups bases used

DuPont have produced a modified chlorosulphonated polyethylene based polymer (trade name Acsium). In this modified polymer the chlorine content is reduced, but an additional pendant alkyl group is used to restrict the ability of the polymer to crystallise. The result is a polymer with a lower Tg than the conventional CSM polymer. [Pg.100]

We have only looked at single alkylations of dicarbonyl compounds, but there are two acidic protons between the carbonyl groups and a second alkylation is usually possible. Excess of base and alkyl halide gives two alkylations in one step. More usefully, it is possible to introduce two different alkyl groups by using just one equivalent of base and alkyl halide in the first step. [Pg.679]

For substituent groups, the excess electron polarizability Aag was also defined [Dearden et al, 1991b] as the difference between the calculated electron polarizability for straight chain alkyl groups by using a model based on the - McGowan characteristic volume Vx and the effective electron polarizability of the substituent ... [Pg.137]

If alkyl groups are attached to the ylide carbon atom, cis-olefins are formed at low temperatures with stereoselectivity up to 98Vo. Sodium bis(trimethylsilyl)amide is a recommended base for this purpose. Electron withdrawing groups at the ylide carbon atom give rise to trans-stereoselectivity. If the carbon atom is connected with a polyene, mixtures of cis- and rrans-alkenes are formed. The trans-olefin is also stereoseiectively produced when phosphonate diester a-carbanions are used, because the elimination of a phosphate ester anion is slow (W.S. Wadsworth, 1977). [Pg.30]

Branched alkyl groups are named by using the longest continuous chain that begins at the point of attachment as the base name Thus the systematic names of the two C3H7 alkyl groups are propyl and 1 methylethyl Both are better known by their common names n propyl and isopropyl respectively... [Pg.74]

In practice this reaction is difficult to carry out with simple aldehydes and ketones because aldol condensation competes with alkylation Furthermore it is not always possi ble to limit the reaction to the introduction of a single alkyl group The most successful alkylation procedures use p diketones as starting materials Because they are relatively acidic p diketones can be converted quantitatively to their enolate ions by weak bases and do not self condense Ideally the alkyl halide should be a methyl or primary alkyl halide... [Pg.781]

Protonolysis. Simple trialkylboranes are resistant to protonolysis by alcohols, water, aqueous bases, and mineral acids. In contrast, carboxyUc acids react readily with trialkylboranes, removing the first alkyl group at room temperature and the third one at elevated temperatures. Acetic and propionic acids are most often used. The reaction proceeds with retention of configuration of the alkyl group via a cycHc, six-membered transition state (206). [Pg.314]

The reactions of trialkylboranes with bromine and iodine are gready accelerated by bases. The use of sodium methoxide in methanol gives good yields of the corresponding alkyl bromides or iodides. AH three primary alkyl groups are utilized in the bromination reaction and only two in the iodination reaction. Secondary groups are less reactive and the yields are lower. Both Br and I reactions proceed with predominant inversion of configuration thus, for example, tri( X(9-2-norbomyl)borane yields >75% endo product (237,238). In contrast, the dark reaction of bromine with tri( X(9-2-norbomyl)borane yields cleanly X(9-2-norbomyl bromide (239). Consequentiy, the dark bromination complements the base-induced bromination. [Pg.315]

Butene. Commercial production of 1-butene, as well as the manufacture of other linear a-olefins with even carbon atom numbers, is based on the ethylene oligomerization reaction. The reaction can be catalyzed by triethyl aluminum at 180—280°C and 15—30 MPa ( 150 300 atm) pressure (6) or by nickel-based catalysts at 80—120°C and 7—15 MPa pressure (7—9). Another commercially developed method includes ethylene dimerization with the Ziegler dimerization catalysts, (OR) —AIR, where R represents small alkyl groups (10). In addition, several processes are used to manufacture 1-butene from mixed butylene streams in refineries (11) (see BuTYLENEs). [Pg.425]

Other Higher Oleiins. Linear a-olefins, such as 1-hexene and 1-octene, are produced by catalytic oligomerization of ethylene with triethyl aluminum (6) or with nickel-based catalysts (7—9) (see Olefins, higher). Olefins with branched alkyl groups are usually produced by catalytic dehydration of corresponding alcohols. For example, 3-methyl-1-butene is produced from isoamyl alcohol using base-treated alumina (15). [Pg.425]

A polysulfone is characterized by the presence of the sulfone group as part of its repeating unit. Polysulfones may be aUphatic or aromatic. AUphatic polysulfones (R and are alkyl groups) were synthesized by radical-induced copolymerization of olefins and sulfur dioxide and characterized many years ago. However, they never demonstrated significant practical utiUty due to their relatively unattractive physical properties, not withstanding the low cost of their raw materials (1,2). The polysulfones discussed in this article are those based on an aromatic backbone stmcture. The term polysulfones is used almost exclusively to denote aromatic polysulfones. [Pg.460]

Potassium Alkoxides. The most widely used potassium bases are potassium tert-hu. oAde [865-47-4] (KTB) and potassium / i -amylate [41233-93-6] (KTA). These strong alkoxide bases offer such advantages as base strength (pX = 18), solubiUty (Table 5), regio/stereoselectivity because of bulky alkyl groups, and stabiUty because of the lack of a-protons. On storage, KTB and KTA have long shelf Hves under inert atmosphere (see... [Pg.519]

Replacement of one of the phenyl groups by an alkyl group of similar bulk, on the other hand, alters the biologic activity in this series. Alkylation of phenylacetonitrile with isopropyl bromide affords the substituted nitrile, 136. Treatment of the anion prepared from 136 with strong base with 2-dimethylamino-l-chloropropane gives isoaminile (137). It is of note that alkylation of this halide, isomeric with that used in the early methadone synthesis, is apparently unaccompanied by isomer formation. Isoaminile is an agent with antitussive activity. [Pg.82]


See other pages where Alkyl groups bases used is mentioned: [Pg.107]    [Pg.604]    [Pg.7]    [Pg.383]    [Pg.95]    [Pg.176]    [Pg.547]    [Pg.319]    [Pg.319]    [Pg.325]    [Pg.430]    [Pg.79]    [Pg.199]    [Pg.474]    [Pg.101]    [Pg.89]    [Pg.311]    [Pg.102]    [Pg.202]    [Pg.40]    [Pg.551]    [Pg.553]    [Pg.882]    [Pg.341]    [Pg.360]    [Pg.162]    [Pg.252]    [Pg.149]    [Pg.72]    [Pg.315]    [Pg.322]   
See also in sourсe #XX -- [ Pg.276 ]




SEARCH



Groups, use

© 2024 chempedia.info