Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck reaction alkenyl triflates

Heck reaction, palladium-catalyzed cross-coupling reactions between organohalides or triflates with olefins (72JOC2320), can take place inter- or intra-molecularly. It is a powerful carbon-carbon bond forming reaction for the preparation of alkenyl- and aryl-substituted alkenes in which only a catalytic amount of a palladium(O) complex is required. [Pg.22]

The Heck reaction consists in the Pd(0)-catalysed coupling of alkenes with an aryl or alkenyl halide or triflate in the presence of a base to form a substituted alkene (Scheme 7.1). The reaction is performed in the presence of an organopalladium catalyst. The halide or triflate is an aryl or a vinyl compound and the alkene contains at least one proton. [Pg.233]

Scheme 7.2 Heck reactions of dihydrofuran with aryl or alkenyl triflates with R)-BITIANP. Scheme 7.2 Heck reactions of dihydrofuran with aryl or alkenyl triflates with R)-BITIANP.
Another sequence involving an anionic and a Pd-catalyzed step was described by the groups of Rossi and Arcadi [477]. These authors prepared substituted tetrahy-dro-2H-pyrrolo[3,2-c]pyrazolones 2-934 starting from hydrazones 2-932 and aryl-halides or alkenyl triflates 2-933 (Scheme 2.208). The first step is the formation of a pyrazolone. There follows cleavage of the urea moiety with piperidine and an inter-as well as an intramolecular Heck-type reaction with 2-933. [Pg.191]

Transition metal-catalyzed transformations are of major importance in synthetic organic chemistry [1], This reflects also the increasing number of domino processes starting with such a reaction. In particular, Pd-catalyzed domino transformations have seen an astounding development over the past years with the Heck reaction [2] - the Pd-catalyzed transformation of aryl halides or triflates as well as of alkenyl halides or triflates with alkenes or alkynes - being used most often. This has been combined with another Heck reaction or a cross-coupling reaction [3] such as Suzuki, Stille, and Sonogashira reactions. Moreover, several examples have been published with a Tsuji-Trost reaction [lb, 4], a carbonylation, a pericyclic or an aldol reaction as the second step. [Pg.359]

Palladium-catalyzed arylation of olefins and the analogous alkenylation (Heck reaction) are the useful synthetic methods for carbon-carbon bond formation.60 Although these reactions have been known for over 20 years, it was only in 1989 that the asymmetric Heck reaction was pioneered in independent work by Sato et al.60d and Carpenter et al.61 These scientists demonstrated that intramolecular cyclization of an alkenyl iodide or triflate yielded chiral cyclic compounds with approximately 45% ee. The first example of the intermolecular asymmetric Heck reaction was reported by Ozawa et al.60c Under appropriate conditions, the major product was obtained in over 96% ee for a variety of aryl triflates.62... [Pg.471]

Regio- and enantioselective Heck reactions of 2 3-dihydrofuran with aryl and alkenyl triflates in the presence of the chiral ligand (R)-BITIANP provides 2-substituted 23-dihydro-furans with complete regioselectivity, high enantioselectivity (86-96% ee) and good yields (76-93%) <99CC1811>. A catalytic oxyselenylation-deselenylation reaction of alkenes offers a stereoselective one-pot conversion of alkenes into 2 -dihydrofurans <99EF0797>. [Pg.149]

In an oxidative addition, Pd(0) complex 22 with BINAP as a ligand accepts alkenyl triflate It. The resulting Pd complex 23 is cationic, since the triflate anion is bound only loosely to the palladium and dissociates from the complex.1 Syn insertion of one of the two enantiotopic double bonds of the cyclopentadienc into the alkenyl-Pd bond of complex 23 leads firs to q -allyl-Pd complex 24. This is in rapid equilibrium with t 3-allyl-Pd complex 25. Neither 24 nor 25 contains a p-H atom in a yn relationship to palladium. Moreover, internal rotation is impossible in the con form a-tionaily fixed ring system. For this reason there is no possibility of a subsequent p-hydride elimination that would once again release the palladium catalyst. In a normal Heck reaction (see discussion) the catalytic cycle would be broken at this point. [Pg.47]

The Heck reaction was discovered in the early 1970s and is extremely useful for rapidly assembling carbon skeletons. This reaction is unique to palladium A great deal of information is known about the reaction. For example, the success of the reaction depends on each of the three steps involved. Electron-donating groups decrease the reactivity of alkenyl halides and triflates toward Pd(0), whereas electron-withdrawing group increase the rate of oxidative addition. In cases where Pd(II) salts are used, it is assumed that they are converted to Pd(0) by some redox process. [Pg.251]

As noted for the Heck reaction, aryl, alkenyl, and alkynyl bromides, iodides, and triflates are best for the oxidative addition. However, aromatic, heteroaromatic, alkenyl, and even alkyl boronic acids and esters can be coupled effectively. The reaction appears almost oblivious to other functional groups present ... [Pg.253]

Although the Heck reaction may be efficiently employed for synthesis, it has its limits that should not go unmentioned the Heck reaction can not—at least not intermolecularly—couple alkenyl triflates (-bromides, -iodides) or aryl triflates (-bromides, -iodides) with metal-free aromatic compounds in the same way as it is possible with the same substrates and metal-free alkenes. The reason is step 4 of the mechanism in Figure 16.35 (part II). If an aromatic compound instead of an alkene was the coupling partner the aromaticity with this carbopallada-tion of a C=C double bond would have to be sacrificed in step 4. Typically, Heck reactions can only be run at a temperature of 100 °C even if they proceed without any such energetic effort. This is why this additional energetically demanding loss of aromaticity is not feasible. [Pg.731]

The palladium-catalyzed arylation and alkenylation of olefins, which were first discovered in the 1970 s by Heck (7,2) and Mizoroki (3) and have been often called the "Heck reaction", are versatile synthetic means for making a carbon-carbon bond. These reactions have been extensively used for organic synthesis during the past two decades (4-7). However, no reports on the "asymmetric Heck reaction" have been appeared until very recently. Shibasaki reported an asymmetric intramolecular cyclization of alkenyl iodides to give c/j-decalin derivatives of 80-91% ee (8-10). Overman reported an intramolecular cyclization of alkenyl triflate, giving a chiral quaternary carbon center of 45% ee (77). We report herein the first example of intermolecular asymmetric Heck-type arylation of cyclic olefins catalyzed by (7 )-BINAP-coordinated palladium complexes (Scheme 1) (12,13). [Pg.80]

Certain alkenes can be alkenylated by alkenyl triflates (bromides, iodides) and ary-lated by aryl triflates (bromides, iodides) even though they do not contain a metal. For these so called Heck reactions to occur, catalytic amounts of palladium(II) acetate and triphenylphosphine, as well as stoichiometric amounts of triethylamine, need to be added to the mixture of the starting materials. The amine serves to reduce Pd(II) to the catalytically active Pd(0) complex (cf. Section 13.3.4). The amine also has an important second role in that it neutralizes the strong acid formed in the reaction (TfOH, HBr, and HI). Apart from that, there also exists a variation of the Heck reaction that works without triphenylphosphine (examples in Figures 13.27 and 13.29). [Pg.539]

Alkenyl triflates are capable of Heck reactions, too, as can be seen in Figure 13.28. [Pg.541]

One of the things the Heck reaction cannot do, at least not in an intermolecular fashion, is couple alkenyl triflates (bromides, iodides) with metal-free aromatic compounds,... [Pg.541]

The proposed mechanism for a standard Heck reaction is depicted in Scheme 6.5. Generally, a haloalkene or haloarene undergoes oxidative addition to an in situ generated, coordinatively unsaturated 14-electron palladium(O) complex, but other substrates such as tosylates, triflates or diazonium salts can also be applied. Subsequent, sy -insertion into the C=C double bond of a complexed olefin yields a t7-(j -alkenyl) or (j- aryl)alkylpalladium complex. If no hydrogen atom in a pseudo cis-position relative to the palladium is present, an internal rotation step is required prior to syw-elimination of the olefin to afford the traws-olefin product and a palladium(II) hydride complex. The latter is restored to the initial Pd(0) species by base-induced reductive elimination.137"401... [Pg.121]

The basic mechanism of the Heck reaction (as shown below) of aryl or alkenyl halides or triflates involves initial oxidative addition of a pal-ladium(O) species to afford a a-arylpalladium(II) complex III. The order of reactivity for the oxidative addition step is I > OTf > Br > Cl. Coordination of an alkene IV and subsequent carbon-carbon bond formation by syn addition provide a a-alkylpalladium(II) intermediate VI, which readily undergoes 3-hydride elimination to release the product VIII. A base is required for conversion of the hydridopalla-dium(II) complex IX to the active palladium(O) catalyst I to complete the catalytic cycle. [Pg.3]

C.i.a. Four-Centered Processes. The carbopalladation of a C,C multiple bond with a carbon-palladium single bonds is the key step in the catalytic cycle of the standard Heck reaction, the intermolecular version of which has been used extensively since its discovery for the functionalization and derivatization of aryl and alkenyl halides, as well as alkenyl triflates or the more reactive nonafiates, which are readily available from the corresponding ketones (Scheme 2) (Sect. IV.2.1.2). [Pg.1125]

Carbopalladation is the reaction of a cr-bonded organopalladium complex I with an unsaturated molecule (such as an alkene 2) to yield the migratory insertion product 3 (Scheme 1). The reaction is tremendously flexible, allowing for a wide variety of structural types for both reactants 1 and 2. The precursors of palladium complexes 1 are commonly alkenyl or aryl halides or triflates (8 and 9, respectively), the reaction of which is more commonly termed the Heck reaction. Allylic systems 10, which react to provide -Tr-allylpalladium complexes, can participate in the reaction as can benzylic precursors 11. Acylpalladium complexes 12 also react and are commonly generated in the same reaction vessel by Pd-catalyzed carbonylation. Their unsaturated reaction partners include alkenes 2, alkynes 4, dienes 6, allenes, and arenes, all of which can be electron rich or poor. Carbopalladation occurs in a syn fashion allowing the installation of stereocenters (2- 3) or control of alkene geometry (4- 5). [Pg.1523]

Side chain introduction by carbopalladation has been utilized in a total synthesis of an-thramycin methyl ether (32) (Scheme Heck reaction of the alkenyl triflate 30 with acrylamide installs the necessary three-carbon chain in moderate yield. The desired alkene geometry and oxidation state are observed in the dienamide 31 with no need for protection of the primary amide. The organopalladium precursor can also be part of the side chain being introduced as illustrated in a synthesis of prostaglandin E2 33. ... [Pg.1526]

Asymmetric carbopalladation can also be combined with other reactions to give domino asynunetric processes. A group selective example from a synthesis of ( capnellene 216 features the cyclization of the alkenyl triflate 210 (Scheme 32). The resultant TT-allylpalladium intermediate has effectively been captured with a variety of nucleophiles including acetate anion for the synthesis. A domino Suzuki coupling/in-tramolecular Heck reaction converts ditriflate 212 into tricycle 213 in modest yield with 85% The transformation accomplises an annnelation, two carbon-carbon bond... [Pg.1555]

Tietze, L.F. and Modi, A. (2000) Regioselective sUane-terminated intramolecular Heck reaction with alkenyl triflates and alkenyl iodides. Eur. J. Org. Chem., 1959-64. [Pg.210]

Scheme 11.7 Intermolecular asymmetric Mizoroki-Heck reaction of alkenyl triflates. Scheme 11.7 Intermolecular asymmetric Mizoroki-Heck reaction of alkenyl triflates.

See other pages where Heck reaction alkenyl triflates is mentioned: [Pg.234]    [Pg.235]    [Pg.723]    [Pg.55]    [Pg.798]    [Pg.266]    [Pg.340]    [Pg.726]    [Pg.591]    [Pg.329]    [Pg.624]    [Pg.69]    [Pg.136]    [Pg.1128]    [Pg.1136]    [Pg.1287]    [Pg.1553]    [Pg.46]    [Pg.263]    [Pg.423]    [Pg.436]    [Pg.437]   
See also in sourсe #XX -- [ Pg.541 ]




SEARCH



Alkenyl triflates

Alkenyl triflates alkenylation

Heck reaction triflates

Triflates alkenylation

Triflates reactions

© 2024 chempedia.info