Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenyl complexes

Alkenyl complexes Hallett MR, Painter JE, Quayle P, Ricketts D (1998) Tetrahedron Lett 39 2851... [Pg.55]

The insertion reaction between alkenylcarbene complexes and electron-rich alkynes such as 1-alkynylamines (ynamines) leads to mixtures of two regioi-someric cyclopentyl derivatives [78]. Thus, if the insertion occurs on the carbon-metal bond a new aminocarbene complex is produced which evolves to a cyclopentenylmetal derivative. On the other hand, if the insertion reaction occurs on the carbon=carbon double bond of the alkenyl complex, the reaction gives a l-metala-4-amino-l,3,5-triene complex which finally generates a different regioisomer of the cyclopentenylmetal derivative (Scheme 31). [Pg.83]

Intermolecular hydroalkoxylation of 1,1- and 1,3-di-substituted, tri-substituted and tetra-substituted allenes with a range of primary and secondary alcohols, methanol, phenol and propionic acid was catalysed by the system [AuCl(IPr)]/ AgOTf (1 1, 5 mol% each component) at room temperature in toluene, giving excellent conversions to the allylic ethers. Hydroalkoxylation of monosubstituted or trisubstituted allenes led to the selective addition of the alcohol to the less hindered allene terminus and the formation of allylic ethers. A plausible mechanism involves the reaction of the in situ formed cationic (IPr)Au" with the substituted allene to form the tt-allenyl complex 105, which after nucleophilic attack of the alcohol gives the o-alkenyl complex 106, which, in turn, is converted to the product by protonolysis and concomitant regeneration of the cationic active species (IPr)-Au" (Scheme 2.18) [86]. [Pg.46]

Examples of silver(l) alkyl and alkenyl (including aryl) complexes have been known from as early as 1941 6-9 however, the number of examples is fairly limited with respect to that of the heavier congeners, copper(l) and gold(l). Such a phenomenon can readily be attributed to the relatively low stability of this class of complexes, both photochemically and thermally. Simple homoleptic alkyl and alkenyl complexes of silver(i) are known to be very unstable under ambient temperature and light, and successful isolation of this class is fairly limited and mainly confined to those involving perfluoroorganics.10 The structures and the metal-carbon bond-dissociation energies for... [Pg.197]

Recently, a proposal has been put forth that a /raor-addition process may be possible through dinuclear ruthenium intermediates.34 As shown in Scheme 5, reaction of tetraruthenium aggregate A with phenylacetylene results in the fully characterized bridging dinuclear alkenyl complex B. The authors propose a direct /ra .r-dclivcry of hydride through a dinuclear intermediate may be active in the hydrosilylation catalyzed by A, though compound B itself is unreactive to Et3SiH. [Pg.793]

On the basis of the infrared spectra, the alkenyl complexes are considered to have a structure of the type shown in Fig. 23a, with a bridging CO group. This structure is related to those of the rhodium cyclo-pentadienyl adducts Rh3(C5H5)3(alkyne)(CO) (137). In the rhodium... [Pg.296]

Alkynes react with the bulky germanium hydride (MejSdjGeH to selectively yield (Z)-alkenes (Equation (105)).67 The hydrogermylation of alkynols or alkynes can be catalyzed by a rhodium complex (Equation (106), Table 18) and some of the intermediates were identified (Scheme 16).132 Similar rhodium species react with alkynes to yield alkenyl complexes,133 and other transition metal complexes have been employed as hydrogermylation catalysts including those containing palladium.134,135... [Pg.731]

Scheme 2. Synthesis of the bis(carbene)alkenyl complex [(TIME )2Cu2] PFe)2 (2 - "-Cu). Scheme 2. Synthesis of the bis(carbene)alkenyl complex [(TIME )2Cu2] PFe)2 (2 - "-Cu).
Non-heteroatom-substituted carbene complexes are in principle accessible either by electrophilic or by nucleophilic addition to alkynyl or alkenyl complexes (Figure 3.26). [Pg.98]

Protonation of alkenyl complexes has been used [56,534,544,545] for generating cationic, electrophilic carbene complexes similar to those obtained by a-abstraction of alkoxide or other leaving groups from alkyl complexes (Section 3.1.2). Some representative examples are sketched in Figure 3.27. Similarly, electron-rich alkynyl complexes can react with electrophiles at the P-position to yield vinylidene complexes [144,546-551]. This approach is one of the most appropriate for the preparation of vinylidene complexes [128]. Figure 3.27 shows illustrative examples of such reactions. [Pg.98]

Fig. 3.27. Preparation of carbene complexes by addition of electrophiles to alkynyl and alkenyl complexes [89,391,552-555],... Fig. 3.27. Preparation of carbene complexes by addition of electrophiles to alkynyl and alkenyl complexes [89,391,552-555],...
Casey was able to prepare related zirconocene alkenyl complexes according to Scheme 8.18. Alkene coordination was established by a number of NMR techniques. While zwitterionic compounds 38 allowed the determination of the alkene dissociation energy, AG = 10.5 kcal mol , very similar to that of 35. Thermally more stable complexes were obtained by protonation of 37 with [HNMePh2][B(C5F5)4[. Dynamic NMR spectroscopy and line shape analysis allowed the measurement of the barriers of alkene dissociation (AG = 10.7 and 11.1 kcal mol ), as well as for the site epimerisation ( chain skipping ) at the zirconium center (AG = 14.4 kcal mol" ) (Scheme 8.19) [77]. [Pg.325]

When only one heteroatom of the dinucleophile possesses a hydrogen substituent, the reactions lead instead to alkenyl complexes rather than carbene compounds. Effectively, treatment of diphenylallenylidenes 1 and 6 with pyrazoles yields the heterocyclic derivatives 61 (Scheme 2.25) [76]. Interestingly, the dissymmetric 3-methylpyrazole (R=H, R = Me) provides only one regioisomer, in which the methyl group points towards the metal. This process, which formally corresponds to the addition of two nitrogen nuclei at C and Cy and a hydrogen atom at Cp, is assumed to take place through an initial nucleophilic attack at the Ca position. [Pg.87]

On the basis of these findings, a pathway for this cydoaddition is proposed in Scheme 7.24. The first step is the nucleophilic attack of the carbon atom in the 2-position of 1,3-cyclohexanedione on the Cy atom of the allenylidene complex to give a vinylidene complex, which is transformed into an alkenyl complex by intramolecular nucleophilic attack of the oxygen atom of a hydroxy group of an enol on the C, atom of the vinylidene complex. By the use of Ic with its bulkier alkanethio moiety as a catalyst and at lower temperature, a subsequent intramolecular cyclization may be slow enough to make isolation of the alkylated product possible. [Pg.232]

A proposed reaction pathway is shown in Scheme 7.29, where either the aromatic carbon or oxygen atom of naphthol may work as a nucleophile. Thus, the first step is the nucleophilic attack of the carbon atom of 1 -position of 2-naphthol on the C. atom of an allenylidene complex A to give a vinylidene complex B, which is then transformed into an alkenyl complex C by nucleophilic attack of the oxygen atom of a hydroxy group upon the Co, atom of B. Another possibility is the nucleophilic attack ofthe oxygen of 2-naphthol upon the Co, atom of the complex A. In this case, the initial attack of the naphthol oxygen results in the formation of a ruthenium-carbene complex, which subsequently leads to the complex B via the Claisen rearrangement of the carbene complex. [Pg.235]

Lanthanide-catalyzed enyne cyclization/hydrosilylation was also applied to the synthesis of silylated alkylidene cyclohexane derivatives. For example, reaction of the 3-silyloxy-l,7-enyne 17 with methylphenylsilane catalyzed by Gp 2YMe(THF) at 50°G for 8h gave 18 in quantitative yield as a 4 1 mixture of trans cis isomers (Equation (11)). Employment of methylphenylsilane in place of phenylsilane was required to inhibit silylation of the initially formed yttrium alkenyl complex, prior to intramolecular carbometallation (see Scheme 8). [Pg.378]

In the process of olefin insertion, also known as carbometalation, the 1,2 migratory insertion of the coordinated carbon-carbon multiple bond into the metal-carbon bond results in the formation of a metal-alkyl or metal-alkenyl complex. The reaction, in which the bond order of the inserted C-C bond is decreased by one unit, proceeds stereoselectively ( -addition) and usually also regioselectively (the more bulky metal is preferentially attached to the less substituted carbon atom. The willingness of alkenes and alkynes to undergo carbometalation is usually in correlation with the ease of their coordination to the metal centre. In the process of insertion a vacant coordination site is also produced on the metal, where further reagents might be attached. Of the metals covered in this book palladium is by far the most frequently utilized in such transformations. [Pg.11]

Acetylene-vinylidene rearrangements of silylacetylene-iron carbonyl complexes have been observed,537 while iron-acetylide hydride complexes of the type [Fe(H)(C=CR)(dmpe)2], where dmpe=l,2-bis(dimethylphosphino)ethane, have been found to react with anions to afford substituted alkenyl complexes. It has been proposed538 that a likely reaction course for this latter rearrangement involves initial protonation of the cr-bound acetylide ligand at the carbon (I to the metal centre to form a vinylidene complex. Metal-to-carbon hydride migration in this vinylidene complex with attack by the anion would then lead to the neutral complex (see Scheme 106). A detailed mechanistic investigation has been carried out539 on the novel metathetical... [Pg.573]

Alkenylboron compounds cyclopropanations, 9, 181 haloetherification, 9, 182 hydrogenation and epoxidation, 9, 182 metal-catalyzed reactions, 9, 183 metallic reagent additions, 9, 182 via radical addition reactions, 9, 183 5-Alkenylboron compounds, cross-coupling reactions, 9, 208 Alkenyl complexes with cobalt, 7, 51 with copper, 2, 160, 2, 174 with Cp Re(CO) (alkene)3 , 5, 915-916 with dicarbonyl(cyclopentadienyl)hydridoirons, 6, 175 with gold, 2, 255... [Pg.44]

Iridium-carbon multiple bonds allenylidene complexes, 7, 355 carbene complexes, 7, 344 carbyne complexes, 7, 361 higher cumulenylidene complexes, 7, 358 vinylidene complexes, 7, 352 Iridium-carbon single-bonded complexes alkenyl complexes, 7, 319 alkyl and aryl complexes, 7, 303 in C-C bond-forming catalysis, 7, 335 characteristics, 7, 303... [Pg.129]


See other pages where Alkenyl complexes is mentioned: [Pg.14]    [Pg.172]    [Pg.198]    [Pg.97]    [Pg.211]    [Pg.98]    [Pg.325]    [Pg.137]    [Pg.964]    [Pg.242]    [Pg.667]    [Pg.367]    [Pg.408]    [Pg.127]    [Pg.635]    [Pg.651]    [Pg.166]    [Pg.168]    [Pg.38]    [Pg.44]    [Pg.73]    [Pg.86]    [Pg.129]    [Pg.131]    [Pg.134]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Alkenyl -metal complexes

Alkenyl complexes benzannulation

Alkenyl complexes, reaction with

Alkenyl complexes, reaction with electrophiles

Alkenyl halides via metal carbene complexes

Alkenyl-carbene complexes

Benzannulation aryl versus alkenyl complexes

Bis alkenyl complex

Cobalt complexes alkenyl halides

Iridium alkenyl complexes

Lithium complexes alkenyl-aryl reactions

Lithium complexes alkenylation

N-Alkenyl complexes

O-Alkenyl complexes

Platinum complexes alkenyl

Silver complexes alkyl, alkenyl, aryls

Sulfides, alkenyl via metal carbene complexes

Titanium complexes, alkenyl

Transition Metal Alkyl and Alkenyl Complexes

Vinylidene from alkenyl complexes

Zirconocene alkenyl complexes

© 2024 chempedia.info