Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes halogen derivatives

A number of chiral ketones have been developed that are capable of enantiose-lective epoxidation via dioxirane intermediates.104 Scheme 12.13 shows the structures of some chiral ketones that have been used as catalysts for enantioselective epoxidation. The BINAP-derived ketone shown in Entry 1, as well as its halogenated derivatives, have shown good enantioselectivity toward di- and trisubstituted alkenes. [Pg.1102]

Fluoroalkylations arc undesirable side-reactions of hydrogen fluoride catalyzed alkylations of alkenes.208 However, selective chain elongation can be achieved in moderate yields with ethene and its halogen derivatives. Thus, various alcohols (terl-butyl, 1,1-dimethylpropyl. benzyl) and alkenes, such as cyclohexene, have been used in fluoroalkylations with ethene derivatives in the presence of hydrogen fluoride (e.g., generation of 1 and 2, respectively).205,400... [Pg.129]

The stereochemistry of photodimerization in the solid state and solution has been reported for several halogenated derivatives of t-1 (Table 2) (59-62). Solid state photodimerization of stilbenes, like other alkenes, is subject to topochem-ical control viz, the two reactive double bonds must be parallel and separated by < 4.2 A (63). The photostability of t-1 in the solid state (39b,59) is consistent with its reported crystal packing (64). The halogenated stilbenes 15-20 serve to illustrate the variety of stereochemical outcomes observed for solution and solid state dimerization (eq. 11). [Pg.176]

The oxidation of alkenes and cycloalkenes and their halogen derivatives with at least one hydrogen or halogen atom at the double bond leads to carboxylic acids. Ozonolysis usually requires the oxidative decomposition of the ozonide. The oxygen content of the ozonide is not sufficient for the formation of two molecules of acids or one dicarboxylic acid. The nonoxidative decomposition of cyclohexene ozonide gives an aldehyde-acid or its derivatives [1108]. It comes, therefore, as a surprise that carboxylic acids are claimed as products of the decomposition of ozonides by hydrogenation over the Lindlar catalyst [55] (equation 108). [Pg.81]

The sulphone coupling which was applied for the first time to the synthesis of vitamin A (29) by Julia [41] has frequently been used for the preparation of retinoids and carotenoids [42]. In this reaction a carbon-carbon double bond is produced by alkylation of the a-carbanion of a sulphone 36 by a halogen derivative 37 to give 38, followed by a base-promoted elimination to give the desired alkene 39 (Scheme 9). [Pg.570]

There are a wide variety of methods for introduction of substituents at C3. Since this is the preferred site for electrophilic substitution, direct alkylation and acylation procedures are often effective. Even mild electrophiles such as alkenes with EW substituents can react at the 3-position of the indole ring. Techniques for preparation of 3-lithioindoles, usually by halogen-metal exchange, have been developed and this provides access not only to the lithium reagents but also to other organometallic reagents derived from them. The 3-position is also reactive toward electrophilic mercuration. [Pg.105]

Perfluorinated organic bromides can be oxidatively fluonnated with elemental fluorine to derivatives containing tn- [124] and pentavalent [/25 126 127] bromine in yields up to 42% Perfluoroheptylbromine tetrafluoride has been used to fluonnate double bonds in halogenated alkenes [127]... [Pg.48]

The alkylation of activated halogen compounds is one of several reactions of trialkylboranes developed by Brown (see also 15-16,15-25,18-31-18-40, etc.). These compounds are extremely versatile and can be used for the preparation of many types of compounds. In this reaction, for example, an alkene (through the BR3 prepared from it) can be coupled to a ketone, a nitrile, a carboxylic ester, or a sulfonyl derivative. Note that this is still another indirect way to alkylate a ketone (see 10-105) or a carboxylic acid (see 10-106), and provides an additional alternative to the malonic ester and acetoacetic ester syntheses (10-104). [Pg.560]

Halogenation of 106 with triphenylphosphine, iodine, and imidazole provided the iodo derivative 109. On treatment with lithium aluminum hydride, 109 was converted into two endocyclic alkenes, 110 and di-O-isopro-pylidenecyclohexanetetrol, in the ratio of 2 1. Oxidation of 110 with dimethyl sulfoxide - oxalyl chloride afforded the enone 111.1,4-Addition of ethyl 2-lithio-l,3-dithiane-2-carboxylate provided compound 112. Reduction of 112 with lithium aluminum hydride, and shortening of the side-chain, gave compound 113, which was converted into 114 by deprotection. ... [Pg.40]

Vamvakas S, Dekant W, Berthold K, et al. 1987. Enzymatic transformation of mercapturic acids derived from halogenated alkenes to reactive and mutagenic intermediates. Biochem Pharmacol 36 2741-3748. [Pg.294]

Although the reaction of ketones and other carbonyl compounds with electrophiles such as bromine leads to substitution rather than addition, the mechanism of the reaction is closely related to electrophilic additions to alkenes. An enol, enolate, or enolate equivalent derived from the carbonyl compound is the nucleophile, and the electrophilic attack by the halogen is analogous to that on alkenes. The reaction is completed by restoration of the carbonyl bond, rather than by addition of a nucleophile. The acid- and base-catalyzed halogenation of ketones, which is discussed briefly in Section 6.4 of Part A, provide the most-studied examples of the reaction from a mechanistic perspective. [Pg.328]

Brown s result was supported by later experiments in which bromonium ions were generated by bubbling gaseous hydrobromic acid through a solution of bromohydrins in halogenated solvents. Under these conditions, bromine is eliminated as it is formed, so that the resulting alkene is observed directly (Scheme 15). This method has been applied to the bromohydrins derived from cis- and trans-stilbenes (Scheme 16) and from 5//-dibenzo[a,d]-cycloheptene and -azepine systems ([29a] and [29b] respectively Scheme 17), in which steric constraints should favour elimination (path a) as against substitution (path b). [Pg.280]

Halocarbons, ketone-alcohol reduction, 84 Halogenation, 4-methylbenzyl chloride [reductive halogenation of aldehyde to benzyl chloride], 124 Hemiacetals, reduction of, 97-99 Hemiaminals, reduction of, 99-100 Hemiketals, reduction of, 97-99 Heptene derivatives, alkene to alkane reductions, disubstituted alkenes, 36-38... [Pg.752]

Previous derivatization of the extract is necessary to improve the stability of the compounds and the sensitivity and precision of subsequent GC-MS analysis. Silyl derivatives formed for example with MSTFA [43], halogenated alkene derivatives produced with heptafluorobutyric anhydride (HFBA) [36] or pentafluoropropionic acid [58] or anhydride (PFPA), as well as acetate derivatives formed using acetic anhydride [48] have been widely employed. [Pg.20]

Numerous reports published in recent years have focused on carbon-centered radicals derived from compounds with selected substitution patterns such as alkanes [40,43,47], halogenated alkanes [43,48,49,51-57], alkenes [19], benzene derivatives [43,47], ethers [51,58], aldehydes [48], amines [10,59], amino acids [23,60-67] etc. Particularly significant advances have been made in the theoretical treatment of radicals occurring in polymer chemistry and biological chemistry. The stabilization of radicals in all of these compounds is due to the interaction of the molecular orbital carrying the unpaired electron with energetically and spatially adjacent molecular orbitals, and four typical scenarios appear to cover all known cases [20]. [Pg.177]

Several studies have shown that sorption of various organic compounds on solid phases could be depicted as an accumulation at hydrophobic sites at the OM/water interface in a way similar to surface active agents. In addition Hansch s constants [19,199-201], derived from the partition distribution between 1-octanol and water, expressed this behavior better than other parameters. Excellent linear correlations between Koc and Kow were found for a variety of nonpolar organic compounds, including various pesticides, phenols, PCBs, PAHs, and halogenated alkenes and benzenes, and various soils and sediments that were investigated for sorption [19,76,80,199-201]. [Pg.140]

Two types of electrogenerated carbon bases have commonly been used (1) dianions derived from activated alkenes, and (2) carbanions formed by reductive cleavage of halogen compounds or by direct reduction of weak carbon acids. In both cases, the efficiency of the proton transfer reaction relies on a thermodynamically favored proton transfer or a fast follow-up reaction of the deproto-nated substrate. [Pg.471]


See other pages where Alkenes halogen derivatives is mentioned: [Pg.407]    [Pg.537]    [Pg.25]    [Pg.955]    [Pg.447]    [Pg.288]    [Pg.56]    [Pg.134]    [Pg.228]    [Pg.288]    [Pg.26]    [Pg.22]    [Pg.81]    [Pg.26]    [Pg.316]    [Pg.368]    [Pg.195]    [Pg.158]    [Pg.911]    [Pg.1037]    [Pg.271]    [Pg.1335]    [Pg.124]    [Pg.322]    [Pg.140]    [Pg.169]    [Pg.52]    [Pg.92]    [Pg.33]    [Pg.146]    [Pg.108]    [Pg.286]    [Pg.29]   


SEARCH



Alkenes derivatives

Alkenes halogenation

Alkenes halogens

Halogen derivatives

Halogenated Alkenes

© 2024 chempedia.info