Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes electrophilic attack

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

Because electrophilic attack on benzene is simply another reaction available to a carbocation other carbocation precursors can be used m place of alkyl halides For exam pie alkenes which are converted to carbocations by protonation can be used to alkyl ate benzene... [Pg.483]

Electrophilic attack on the sulfur atom of thiiranes by alkyl halides does not give thiiranium salts but rather products derived from attack of the halide ion on the intermediate cyclic salt (B-81MI50602). Treatment of a s-2,3-dimethylthiirane with methyl iodide yields cis-2-butene by two possible mechanisms (Scheme 31). A stereoselective isomerization of alkenes is accomplished by conversion to a thiirane of opposite stereochemistry followed by desulfurization by methyl iodide (75TL2709). Treatment of thiiranes with alkyl chlorides and bromides gives 2-chloro- or 2-bromo-ethyl sulfides (Scheme 32). Intramolecular alkylation of the sulfur atom of a thiirane may occur if the geometry is favorable the intermediate sulfonium ions are unstable to nucleophilic attack and rearrangement may occur (Scheme 33). [Pg.147]

Certain metal cations are capable of electrophilic attack on alkenes. Addition is completed when a nucleophile adds to the alkene-cation complex. The nucleophile may be the solvent or a ligand from the metal ion s coordination sphere. [Pg.369]

For those substrates more susceptible to nucleophilic attack (e.g., polyhalo alkenes and alkenes of the type C=C—Z), it is better to carry out the reaction in basic solution, where the attacking species is RO . The reactions with C=C—Z are of the Michael type, and OR goes to the side away from the Z. Since triple bonds are more susceptible to nucleophilic attack than double bonds, it might be expected that bases would catalyze addition to triple bonds particularly well. This is the case, and enol ethers and acetals can be produced by this reaction. Because enol ethers are more susceptible than triple bonds to electrophilic attack, the addition of alcohols to enol ethers can also be catalyzed by acids. " One utilization of this reaction involves the compound dihydropyran... [Pg.996]

Alkenes of all types can be converted to cyclopropane derivatives by this reaction (though difficulty may be encountered with sterically hindered ones). Even tetracyanoethylene, which responds very poorly to electrophilic attack, gives cyclopropane derivatives with carbenes.Conjugated dienes give 1,2 addition ... [Pg.1085]

The addition of an alkene to formaldehyde in the presence of an acid catalyst is called the Prins reaction.Three main products are possible which one predominates depends on the alkene and the conditions. When the product is the 1,3-diol or the dioxane, the reaction involves addition to the C=C as well as to the C=0. The mechanism is one of electrophilic attack on both double bonds. The acid first protonates the C=0, and the resulting carbocation attacks the C=C ... [Pg.1241]

The mechanism of oxidation probably involves in most cases the initial formation of a glycol (15-35) or cyclic ester,and then further oxidation as in 19-7. In line with the electrophilic attack on the alkene, triple-bonds are more resistant to oxidation than double bonds. Terminal triple-bond compounds can be cleaved to carboxylic acids (RC=CHRCOOH) with thallium(III) nitrate or with [bis(trifluoroacetoxy)iodo]pentafluorobenzene, that is, C6F5l(OCOCF3)2, among other reagents. [Pg.1526]

The reactivity of different alkenes toward mercuration spans a considerable range and is governed by a combination of steric and electronic factors.24 Terminal double bonds are more reactive than internal ones. Disubstituted terminal alkenes, however, are more reactive than monosubstituted cases, as would be expected for electrophilic attack. (See Part A, Table 5.6 for comparative rate data.) The differences in relative reactivities are large enough that selectivity can be achieved with certain dienes. [Pg.296]

Although the reaction of ketones and other carbonyl compounds with electrophiles such as bromine leads to substitution rather than addition, the mechanism of the reaction is closely related to electrophilic additions to alkenes. An enol, enolate, or enolate equivalent derived from the carbonyl compound is the nucleophile, and the electrophilic attack by the halogen is analogous to that on alkenes. The reaction is completed by restoration of the carbonyl bond, rather than by addition of a nucleophile. The acid- and base-catalyzed halogenation of ketones, which is discussed briefly in Section 6.4 of Part A, provide the most-studied examples of the reaction from a mechanistic perspective. [Pg.328]

Intermodular Alkylation by Carbocations. The formation of carbon-carbon bonds by electrophilic attack on the ir system is a very important reaction in aromatic chemistry, with both Friedel-Crafts alkylation and acylation following this pattern. These reactions are discussed in Chapter 11. There also are useful reactions in which carbon-carbon bond formation results from electrophilic attack by a carbocation on an alkene. The reaction of a carbocation with an alkene to form a new carbon-carbon bond is both kinetically accessible and thermodynamically favorable. [Pg.862]

The rates of phenylchlorocarbene have also been compared with the fluoro and bromo analogs.120 The data show slightly decreased rates in the order Br > Cl > F. The alkene reactivity difference is consistent with an electrophilic attack. These reactions have low activation barriers and the reactivity differences are dominated by entropy effects. [Pg.907]

Initially, it was thought more likely that the electron poor metal atom would be involved in the electrophilic attack at the alkene and also the metal-carbon bond would bring the alkene closer to the chiral metal-ligand environment. This mechanism is analogous to alkene metathesis in which a metallacyclobutane is formed. Later work, though, has shown that for osmium the actual mechanism is the 3+2 addition. Molecular modelling lends support to the 3+2 mechanism, but also kinetic isotope effects support this (KIEs for 13C in substrate at high conversion). Oxetane formation should lead to a different KIE for the two alkene carbon atoms involved. Both experimentally and theoretically an equal KIE was found for both carbon atoms and thus it was concluded that an effectively symmetric addition, such as the 3+2 addition, is the actual mechanism [22] for osmium. [Pg.312]

Epoxidation of c/.v-P-mcthylstyrcnc and trara-P-methylstyrene produce the epoxides with retention of configuration [36], The reaction is first order in styrene and Ru02 and the reaction is faster when the styrene molecules contain electron donating substituents. This shows that the oxo attack at the alkene is an electrophilic attack [37], Epoxidation of 1-alkenes gives aldehyde as the... [Pg.316]

Calculations [28] on the formation of cyclopropanes from electrophilic Fischer-type carbene complexes and alkenes suggest that this reaction does not generally proceed via metallacyclobutane intermediates. The least-energy pathway for this process starts with electrophilic addition of the carbene carbon atom to the alkene (Figure 1.9). Ring closure occurs by electrophilic attack of the second carbon atom... [Pg.7]

Calculations performed for cyclopropanation with Fischer-type carbene complexes [28] indicate that the electrophilic attack of the carbene complex at the alkene and the final ring closure are concerted. Extrapolation from this result to the C-H insertion reaction (in which a a-bond instead of a 7i-bond is cleaved) suggests that C-H bond cleavage and the formation of the new C-C and C-H bonds might also be concerted (Figure 3.38). [Pg.122]

Again, the exclusive formation of six-membered rings indicates that the cyclization takes place by the electrophilic attack of a cationic center, generated from the enol ester moiety to the olefinic double bond. The eventually conceivable oxidation of the terminal double bond seems to be negligible under the reaction conditions since the halve-wave oxidation potentials E1/2 of enol acetates are + 1.44 to - - 2.09 V vs. SCE in acetonitrile while those of 1-alkenes are + 2.70 to -1- 2.90 V vs. Ag/0.01 N AgC104 in acetonitrile and the cyclization reactions are carried out at anodic potentials of mainly 1.8 to 2.0 V vs. SCE. [Pg.82]

If, on the other hand, it is assumed that the initial electrophilic attack is reversible and that addition can occur above or below the plane defined by the alkenes, two diastereomeric cations woidd be formed, perhaps in approximately equal concentration. Due to the proximity of the chiral acyl group, the probability of achieving the transition states (approximately represented by 146 and 147) would be unequal and a function of the difference in sizes of groups R and R (146 and 147). [Pg.323]

Mechanistically, this is an electrophilic attack involving the n electron system of the alkene and the... [Pg.290]

Because the initial electrophilic attack and carbocation formation results in loss of aromatic stabilization, the electrophiles necessary for electrophilic aromatic substitution must be more reactive than those that typically react with alkenes. Thus, chlorination or... [Pg.304]

The nucleophiles that are used for synthetic purposes include water, alcohols, carboxylate ions, hydroperoxides, amines, and nitriles. After the addition step is complete, the mercury is usually reductively removed by sodium borohydride. The net result is the addition of hydrogen and the nucleophile to the alkene. The regioselectivity is excellent and is in the same sense as is observed for proton-initiated additions.16 Scheme 4.1 includes examples of these reactions. Electrophilic attack by mercuric ion can affect cyclization by intramolecular capture of a nucleophilic functional group, as illustrated by entries 9-11. Inclusion of triethylboron in the reduction has been found to improve yields (entry 9).17... [Pg.196]

Because halogenation involves electrophilic attack, substituents on the double bond that increase electron density increase the rate of reaction, whereas electron-withdrawing substituents have the opposite effect. Bromination of simple alkenes is an extremely fast reaction. Some specific rate data are tabulated and discussed in Section 6.3 of Part A. [Pg.202]


See other pages where Alkenes electrophilic attack is mentioned: [Pg.57]    [Pg.57]    [Pg.240]    [Pg.83]    [Pg.115]    [Pg.116]    [Pg.151]    [Pg.240]    [Pg.85]    [Pg.199]    [Pg.860]    [Pg.861]    [Pg.982]    [Pg.298]    [Pg.707]    [Pg.1337]    [Pg.74]    [Pg.509]    [Pg.714]    [Pg.275]    [Pg.304]    [Pg.299]    [Pg.304]    [Pg.311]    [Pg.90]    [Pg.454]    [Pg.303]    [Pg.304]   
See also in sourсe #XX -- [ Pg.146 , Pg.153 , Pg.216 , Pg.217 ]




SEARCH



Alkenes attack

Alkenes, electrophilic

© 2024 chempedia.info