Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes catalysts, platinum complexes

Rhodium (I) complexes of chiral phosphines have been the archetypical catalysts for the hydrocarbonylation of 1-alkenes, with platinum complexes such as (61) making an impact also in the early 1990s[1461. More recently, rhodium(I)-chiral bisphosphites and phosphine phosphinites have been investigated. Quite remarkable results have been obtained with Rh(I)-BINAPHOS (62), with excellent ee s being obtained for aldehydes derived for a wide variety of substrates1 471. For example, hydroformylation of styrene gave a high yield of (R)-2-phenylpropanal (94% ee). The same catalyst system promoted the conversion of Z-but-2-ene into (5)-2-methylbutanal (82% ee). [Pg.37]

Ca.ta.lysts, A small amount of quinoline promotes the formation of rigid foams (qv) from diols and unsaturated dicarboxyhc acids (100). Acrolein and methacrolein 1,4-addition polymerisation is catalysed by lithium complexes of quinoline (101). Organic bases, including quinoline, promote the dehydrogenation of unbranched alkanes to unbranched alkenes using platinum on sodium mordenite (102). The peracetic acid epoxidation of a wide range of alkenes is catalysed by 8-hydroxyquinoline (103). Hydroformylation catalysts have been improved using 2-quinolone [59-31-4] (104) (see Catalysis). [Pg.394]

In 1971, a short communication was published [54] by Kumada and co-workers reporting the formation of di- and polysilanes from dihydrosilanes by the action of a platinum complex. Also the Wilkinson catalyst (Ph3P)3RhCl promotes hydrosilation. If no alkenes are present, formation of chain silanes occurs. A thorough analysis of the product distribution shows a high preference for polymers (without a catalyst, disproportionation reactions of the silanes prevail). Cross experiments indicate the formation of a silylene complex as intermediate and in solution, free silylenes could also be trapped by Et3SiH [55, 56],... [Pg.30]

Fig. 2.12 Silver, gold and platinum complexes with monodentate NHC ligands as catalysts for the diboration of alkenes and alkynes... Fig. 2.12 Silver, gold and platinum complexes with monodentate NHC ligands as catalysts for the diboration of alkenes and alkynes...
Diboration of alkene is catalyzed by Pt(0),42,48-51 Rh(i),52-57 Au(i),52 and Ag(i)58 complexes. Phosphine-free platinum complexes such as Pt(dba)2 and Pt(cod)2 are efficient catalysts for diboration of alkene, whereas those with phosphine ligands show much lower catalytic activities (Equations (3) and (4)).48,49 A PtCl2(cod) complex, which may be readily reduced to Pt(0) species with diboron, also catalyzes the addition of bis(catecholato)diboron to alkenes.42 Platinum-catalyzed diboration has so far been limited to terminal alkenes and strained cyclic alkenes. [Pg.729]

Platinum complexes have so far proved to be of only limited value as carbonylation catalysts. H2PtCl6 in the presence of SnCl2 acts as a hydroesterification catalyst for terminal alkenes (equation 141).5... [Pg.291]

The platinum complex (diphoe)Pt(CF3)(OH) is an effective catalyst for the selective epoxidation of terminal alkenes by dilute H202 under mild conditions (20 °C). The reaction is thought to proceed via external attack of the HOO- anion on the coordinated alkene (equation 296).636... [Pg.398]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]

The platinum catalyst is effective in very small amounts, and can be introduced as H2PtCl6 or as elemental platinum on an inert support. A particularly active catalyst is the soluble platinum complex of divinyltetramethyldisilox-ane, CH2=CHSiMe2-0-SiMe2CH=CH2. The hydrosilyla-tion reaction operates through the Chalk-Harrod mechanism or one of its variants. bz jn these mechanisms, the first step involves the conversion of a metal alkene complex to a metal alkene silyl hydride complex. In addition to platinum, recently ruthenium, rhodium, palladium, copper, and zinc complexes are being studied as hydrosilation catalysts. " ... [Pg.3988]

The double silylation of unsaturated organic compounds catalyzed by group 10 metals is a convenient synthetic route to disilacyclic compounds. Nickel and platinum complexes, in particular, are excellent catalysts for the transformation of disilanes. Cyclic bis(silyl)metal complexes2,3 have been implicated as key intermediates in the metal-catalyzed double silylation of alkynes, alkenes, and aldehydes however, the intermediates have not been isolated due to their instability. We now describe (i) the isolation of the reactive intermediates cyclic bis(silyl)metal compounds (1) with bulky o-carborane unit 4 (ii) the generation of a new class of heterocyclic compounds (4-5) by the stoichiometric reaction of the intermediates with a variety of substrates such as an alkyne, dione, and nitrile 4 and (iii) the facile double silylation of alkenes and alkynes (10,12-14) catalyzed by the intermediate under mild conditions.5... [Pg.244]

The complexes derived from platinum complexes and SnCh exhibit catalytic activity for hydrogenation under mild conditions. These complexes have also been used for alkene hydroformylation. The above catalyst system and [PtCl2(PPh3)2] assist hydrogenation of polyenes to monoalkenes, but isomerization of double bonds has been observed. The anionic cluster complex [ Pt3(CO)6 5] has been used as a catalyst for hydrogenation of cyclohexene. [Pg.447]

Vinyl halides add to allylic amines in the presence of Ni(cod)2 where cod=l, 5-cyclooctodine, followed by reduction with sodium borohydride. Aryl iodides add to alkynes using a platinum complex in conjunction with a palladium catalyst. A palladium catalyst has been used alone for the same purpose, and the intramolecular addition of a arene to an aUcene was accomplished with a palladium or a GaCl3 catalyst, " AUcyl iodides add intramolecularly to aUcenes with a titanium catalyst, or to alkynes using indium metal and additives. The latter cyclization of aryl iodides to alkenes was accomplished with indium and iodine or with Sml2. " ... [Pg.1100]

The silicon hydrides do not spontaneously add to alkenes either. However, the hydrosilation, or hydrosilylation reaction, of olefins is of significant utility in the preparation of alkyl-subtituted silanes with the use of either radical or transition metal catalysis. The preferred metal catalysts for hydrosilation are platinum complexes. Chloro-platinic acid will catalyze hydrosilations with halosilanes, alkylarylhalosilanes, alkoxy-silanes, and siloxanes that in many cases are quantitative under ambient conditions. Yields and conversions are generally poorer for alkyl,- and arylsilanes. Many other coordination complexes have been found to catalyze the hydrosilation reaction, and these can provide certain advantages, particularly in regiochemistry. Some typical hydrosilation reactions are shown in Table... [Pg.556]

The mechanism of catalytic hydrosilylation is not well understood. Study of these reactions is hampered by their complexity induction periods are often involved, reaction conditions such as the nature of the catalyst and reacting groups are critical factors, and side-reactions, such as alkene rearrangements, are common. A widely accepted mechanism for homogeneous catalysis by platinum complexes is based on the work of Chalk and Harrod (Scheme 10)5,8,262. With Speier s catalyst, it appears that initially, and probably during the induction period, silane reduces the platinum to a Pt(0) or Pt(II) complex that is the active catalytic species265. [Pg.1459]


See other pages where Alkenes catalysts, platinum complexes is mentioned: [Pg.65]    [Pg.254]    [Pg.114]    [Pg.149]    [Pg.152]    [Pg.791]    [Pg.90]    [Pg.377]    [Pg.376]    [Pg.371]    [Pg.371]    [Pg.263]    [Pg.303]    [Pg.915]    [Pg.930]    [Pg.430]    [Pg.56]    [Pg.203]    [Pg.364]    [Pg.263]    [Pg.303]    [Pg.567]    [Pg.669]    [Pg.5244]    [Pg.5244]    [Pg.6408]    [Pg.6448]    [Pg.7210]   
See also in sourсe #XX -- [ Pg.291 ]

See also in sourсe #XX -- [ Pg.291 ]

See also in sourсe #XX -- [ Pg.6 , Pg.291 ]




SEARCH



Catalysts alkenes

Complexes alkenes

Platinum alkenes

Platinum complex catalysts

© 2024 chempedia.info