Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes asymmetric aminohydroxylation

Mehrmann SJ, Abdel-MagidAF, Maryanoff CA, Medaer BP (2004) Non-Salen Metal-Catalyzed Asymmetric Dihydroxylation and Asymmetric Aminohydroxylation of Alkenes. Practical Applications and Recent Advances. 6 153-180 De Meijere, see Wu YT (2004) 13 21-58 Manage S, see Fontecave M (2005) 15 271-288... [Pg.292]

There have also been significant advances in the imido chemistry of ruthenium and osmium. A variety of imido complexes in oxidation states +8 to +6 have been reported. Notably, osmium (VIII) imido complexes are active intermediates in osmium-catalyzed asymmetric aminohydroxyl-ations of alkenes. Ruthenium(VI) imido complexes with porphyrin ligands can effect stoichiometric and catalytic aziridination of alkenes. With chiral porphyrins, asymmetric aziridination of alkenes has also been achieved. Some of these imido species may also serve as models for biological processes. An imido species has been postulated as an intermediate in the nitrite reductase cycle. " ... [Pg.735]

Osmium-catalysed dihydroxylation has been reviewed with emphasis on the use of new reoxidants and recycling of the catalysts.44 Various aspects of asymmetric dihydroxylation of alkenes by osmium complexes, including the mechanism, acceleration by chiral ligands 45 and development of novel asymmetric dihydroxylation processes,46 has been reviewed. Two reviews on the recent developments in osmium-catalysed asymmetric aminohydroxylation of alkenes have appeared. Factors responsible for chemo-, enantio- and regio-selectivities have been discussed.47,48 Osmium tetraoxide oxidizes unactivated alkanes in aqueous base. Isobutane is oxidized to r-butyl alcohol, cyclohexane to a mixture of adipate and succinate, toluene to benzoate, and both ethane and propane to acetate in low yields. The data are consistent with a concerted 3 + 2 mechanism, analogous to that proposed for alkane oxidation by Ru04, and for alkene oxidations by 0s04.49... [Pg.89]

Alkenes are oxidized to 2-amino ketones in an osmium-catalysed oxidation with CAT. The reaction can also be carried out as a sequential process consisting of asymmetric aminohydroxylation and subsequent oxidation to enantiopure 2-amino ketones.107... [Pg.97]

With cis-vic-aminohydroxylations of unsymmetrical alkenes, however, it may be a problem that two regioisomers occur—a complication that does not occur with cis-vic-dihydroxylations. The addition of (DHQ)2-PHAL or (DHQD)2-PHAL (Figure 17.21, part I) in a cis-vic-aminohydroxylation will also cause asymmetric catalysis. The related reactions are known as asymmetric aminohydroxylations. [Pg.766]

In 1975 Sharpless and coworkers discovered the stoichiometric aminohydrox-ylation of alkenes by alkylimido osmium compounds leading to protected vicinal aminoalcohols [1,2]. Shortly after, an improved procedure was reported employing catalytic amounts of osmium tetroxide and a nitrogen source (N-chlo-ro-N-metallosulfonamides or carbamates) to generate the active imido osmium species in situ [3-8]. Stoichiometric enantioselective aminohydroxylations were first reported in 1994 [9]. Finally, in 1996 the first report on a catalytic asymmetric aminohydroxylation (AA) was published [10]. During recent years, several reviews have covered the AA reaction [11-16]. [Pg.60]

Sharpless and co-workers first reported the aminohydroxyIation of alkenes in 1975 and have subsequently extended the reaction into an efficient one-step catalytic asymmetric aminohydroxylation. This reaction uses an osmium catalyst [K20s02(OH)4], chloramine salt (such as chloramine T see Chapter 7, section 7.6) as the oxidant and cinchona alkaloid 1.71 or 1.72 as the chiral ligand. For example, asymmetric aminohydroxylation of styrene (1.73) could produce two regioisomeric amino alcohols 1.74 and 1.75. Using Sharpless asymmetric aminohydroxylation, (IR)-N-ethoxycarbonyl-l-phenyl-2-hydroxyethylamine (1.74) was obtained by O Brien et al as the major product and with high enantiomeric excess than its regioisomeric counterpart (R)-N-ethoxycarbonyl-2-phenyl-2-hydroxyethylamine (1.75). The corresponding free amino alcohols were obtained by deprotection of ethyl carbamate (urethane) derivatives. [Pg.25]

Aminohydroxylation of unsymmetrically substituted alkenes, in contrast to dihydroxylation, may give two possible regioisomers of aminoalcohol derivatives but asymmetric aminohydroxylation, by using the same catalytic system as that used for Sharpless asymmetric dihydroxylation, can be highly regioselective as well as enantioselective. [Pg.301]

Sharpless asymmetric aminohydroxylation One-pot enantioselective synthesis of protected vicinal amino alcohols from simple alkenes. 404... [Pg.511]

Lohray, B. B., Bhushan, V., Reddy, G. J., Reddy, A. S. Mechanistic investigation of asymmetric aminohydroxylation of alkenes. Indian J. Chem., Sect. S2002, 41B, 161-168. [Pg.673]

The Sharpless asymmetric hydroxylation can take one of two forms, the initially developed asymmetric dihydroxylation (AD)1 or the more recent variation, asymmetric aminohydroxylation (AA).2 In the case of AD, the product is a 1,2-diol, whereas in the AA reaction, a 1,2-amino alcohol is the desired product. These reactions involve the asymmetric transformation of an alkene to a vicinally functionalized alcohol mediated by osmium tetraoxide in the presence of chiral ligands (e.g., (DHQD)2-PHAL or (DHQ)2-PHAL). A mixture of these reagents (ligand, osmium, base, and oxidant) is commercially available and is sold under the name of AD-mix p or AD-mix a (vide infra). [Pg.67]

The mnemonic device used to predict the sense of enantioselectivity in the AD reaction can also be used in the AA process. Typical examples include the asymmetric aminohydroxylation of alkenes (5.63-5.67), all with excellent enantioselectivity. Heterocyclic groups are tolerated in the AA reaction and high ees have been obtained for the aminohydroxylation of furanoyl acrylates such as (5.65). ° In common with the AD reaction, pyrrolyl- and pyridyl-substituted olefins are difficult substrates and blocking of the nitrogen is required for enantioselective aminohydroxylation. However, indoles such as (5.66) undergo aminohydroxylation with good ee. The AA reaction has also been applied to the desymmetrisation of dienylsilane (5.67) by Landais and coworkers. Whilst the enantioselectivity is not perfect, the reaction is still remarkably regio- and diastereoselective. [Pg.128]

Aminohydroxylation of Alkenes. Sharpless asymmetric aminohydroxylation (AA) allows for the catalytic and enantios-elective symthesis of protected vicinal aminoalcohols in a single step. This reaction is significant as it applies to the synthesis of a wide variety of biologically active agents and natural products. For example, new monoterpene /3-amino alcohols can effectively be synthesized from (+)-2-carene, (+)-3-carene, (—)-/3-pinene, and... [Pg.273]

The /Tamino alcohol structural unit is a key motif in many biologically important molecules. It is difficult to imagine a more efficient means of creating this functionality than by the direct addition of the two heteroatom substituents to an olefin, especially if this transformation could also be in regioselective and/ or enantioselective fashion. Although the osmium-mediated75 or palladium-mediated76 aminohydroxylation of alkenes has been studied for 20 years, several problems still remain to be overcome in order to develop this reaction into a catalytic asymmetric process. [Pg.232]

Unlike the impressive progress that has been reported with asymmetric catalysis in other additions to alkenes (i.e., the Diels-Alder cycloaddition, epoxidation, dihydroxylation, aminohydroxylation, and hydrogenation) so far this is terra incognita with nitrile oxide cycloadditions. It is easy to predict that this will become a major topic in the years to come. [Pg.386]


See other pages where Alkenes asymmetric aminohydroxylation is mentioned: [Pg.232]    [Pg.236]    [Pg.740]    [Pg.102]    [Pg.118]    [Pg.203]    [Pg.1180]    [Pg.526]    [Pg.97]    [Pg.69]    [Pg.258]    [Pg.269]    [Pg.443]    [Pg.199]    [Pg.62]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Alkenes aminohydroxylation

Alkenes asymmetric

Aminohydroxylation

Aminohydroxylations

Asymmetric aminohydroxylation

Asymmetrical alkene

© 2024 chempedia.info