Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes, addition reactions regiochemistry

Why does alkene hydroboration take place with non-Markovnikov regiochemistry, yielding the less highly substituted alcohol Hydroboration differs from many other alkene addition reactions in that it occurs in a single step without a carbocation intermediate. We can view the reaction as taking place through a four-center, cyclic transition state, as shown in Figure 7.6 p. 244). Since both C-H and C-B bonds form at the same time and from the same face of the alkene, syn stereochemistry is observed. [Pg.243]

This chapter and Chapter 10 continue our cataloging of the standard reactions of organic chemistry. To the SnI, Sn2, El, and E2 reactions we now add a variety of alkene addition reactions. Although there are several different mechanisms for additions, many take place through a three-step sequence of protonation, addition, and deprotonation. The following new problems allow you to practice the basics of addition reactions and to extend yourself to some more complex matters. Even simple additions become complicated when they occur in intramolecular fashion, for example. These problems also allow you to explore the influence of resonance and inductive effects, and to use the regiochemistry and stereochemistry of addition to help work out the probable mechanisms of reactions. [Pg.404]

Reactions of alkynes with electrophiles are generally similar to those of alkenes. Because the HOMO of alkynes (acetylenes) is also of n type, it is not surprising that there IS a good deal of similarity between alkenes and alkynes in their reactivity toward electrophilic reagents. The fundamental questions about additions to alkynes include the following. How reactive are alkynes in comparison with alkenes What is the stereochemistry of additions to alkynes And what is the regiochemistry of additions to alkynes The important role of halonium ions and mercurinium ions in addition reactions of alkenes raises the question of whether similar species can be involved with alkynes, where the ring would have to include a double bond ... [Pg.371]

Markovnikov s rule is used to predict the regiochemistry of HX (electrophilic) addition reactions. The rule states that HX adds to an unsymmetrical alkene mainly in the direction that bonds H to the less substituted alkene carbon and X to the more substituted alkene carbon. [Pg.108]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

One of the most striking differences between conjugated dienes and typical alkenes is in their electrophilic addition reactions. To review briefly, the addition of an electrophile to a carbon-carbon double bond is a general reaction of alkenes (Section 6.7). Markovnikov regiochemistry is found because the more stable carbo-cation is formed as an intermediate. Thus, addition of HC1 to 2-methylpropene yields 2-chloro-2-methylpropane rather than l-chloro-2-methylpropane, and addition of 2 mol equiv of HC1 to the nonconjugated diene 1,4-pentadiene yields 2,4-dichloropentane. [Pg.487]

Markovnikov s rule (Section 6.8) A guide for determining the regiochemistry (orientation) of electrophilic addition reactions. In the addition of HX to an alkene, the hydrogen atom bonds to the alkene carbon thal has fewer alkyl substituents. [Pg.1245]

However, from the outset of this field, the limitations as well as the potentials of this cycloaddition were also apparent. For instance, the efficiency of this cycloaddition in an intermolecular manner was typically low unless strained olefins were used. Moreover, the use of unsymmetrical alkenes led to a mixture of the cyclopentenone regioisomers. Synthetic utility of this reaction is considerably expanded by the emergency of the intramolecular reaction. Schore introduced the first intramolecular version forming several rings simultaneously, which is now the most popular synthetic strategy in natural product synthesis because of its conceptual and operational simplicity. Additionally, the regiochemistry is no longer the problem in this variation. [Pg.336]

Predicting the Products, Including Regiochemistry and Stereochemistry, Resulting from Addition Reactions of Alkenes... [Pg.404]

In 1869 Vladimir Markovnikov studied the regiochemistry of a large number of these addition reactions. On the basis of his observations, he postulated an empirical rule that can be used to predict the orientation of additions to alkenes ... [Pg.407]

Selenenyl chlorides add to alkenes, often via an AdE2 mechanism involving a bridged seleniranium ion intermediate (19) (equation 14). These reactions are therefore highly stereospecitic, resulting in anti addition. The regiochemistry of the process can be under either kinetic or thermodynamic control. In some cases, initial anti-Markovnikov products were observed at low temperature and Markovnikov adducts dominated after further equilibration. Analogous electrophilic additions to acetylenes and aUenes (Scheme 9) have also been reported. When selenenyl hahdes react with alkenes in the presence of other nucleophiles such... [Pg.4321]

Another useful cyclization results in the stereoselective synthesis of -lactams fiom thiiranium ions derived from a, -unsaturated amides. Unsaturated amides are treated with benzenesulfenyl chloride and the product is subsequently treated with base under phase transfer conditions. The reaction regenerates a thiiranium ion in the presence of amide anion, which then cyclizes to form -lactams. The regiochemistry of the alkene addition determines the eventual stereochemical outcome e.g. cu-alkenes produce cu- -lactams Scheme 2). The yields of the cyclization products are quite sensitive to the amide-protecting group which was employed. With 4-anisyl amide the yield is moderate (73%), but with 4-nitrophenyl amide the yield is excellent (97%), suggesting that the amide must be deprotonated before cyclization can occur. ... [Pg.517]

Mechanism of the o] mercuration of an alkene to yield an alcohol. TTiis electrophilic addition reaction involves a mercurinium ion intermediate, and its mechanism is similar to that of halohydrin formation. The product of the reaction is the more highly substituted alcohol, corresponding to Markovnikov regiochemistry. [Pg.241]

The anti-Markovnikov addition of HBr to alkenes was probably the first free-radical addition reaction to be discovered. The discovery was inadvertent around the turn of the twentieth century, scientists studying the regiochemistry of addition of HBr to alkenes found that the proportion of Markovnikov to anti-Markovnikov addition products varied inexplicably from run to run. Eventually, it was discovered that impurities such as O2 and peroxides greatly increased the amount of anti-Markovnikov addition product. The results were later explained by a free-radical addition mechanism. The anti-Markovnikov regiochemistry derives from the addi-ton of the Br- radical to the less substituted C of the alkene (steric reasons) to give the lower energy, more substituted radical (electronic reasons). In a polar reaction, Br- would add to the more substituted C of the alkene. [Pg.244]


See other pages where Alkenes, addition reactions regiochemistry is mentioned: [Pg.224]    [Pg.224]    [Pg.243]    [Pg.263]    [Pg.224]    [Pg.522]    [Pg.243]    [Pg.262]    [Pg.353]    [Pg.429]    [Pg.342]    [Pg.129]    [Pg.14]    [Pg.1145]    [Pg.426]    [Pg.73]    [Pg.262]    [Pg.278]    [Pg.298]    [Pg.262]    [Pg.541]    [Pg.73]    [Pg.900]    [Pg.535]    [Pg.1125]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Addition reactions alkenes

Regiochemistry

© 2024 chempedia.info