Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes asymmetric hydroformylation

Alkane dehydroeyelization with Pt-Sn-alumina catalysts—Continued pressure effect, 120 PtSn alloy formation, 117-118 role of Sn, 117 Sn vs. carbon deposition, 120 Sn vs. coking, 118-119 Sn vs. n-octane conversion, 120-122 Sn vs. selectivity, 118 temperature effect, 119 Alkene hydroformylation, asymmetric catalysis, 24... [Pg.398]

The discovery of the bisphospholane scaffold as a new privileged structure for asymmetric induction in alkene hydroformylation has triggered research for new and improved bisphospholane-type ligands. In this context (k,k)-Ph-bpc has been identified as an excellent ligand for asymmetric hydroformylation, which gives state-of-the-art regio- and enantioselectivities... [Pg.160]

The monosulfonated PPh derivative, Ph2P(m-C6H4S03K) (DPM) and its rhodium complex, HRh(CO)(DPM)3 have been synthesized and characterized by IR and NMR spectroscopic techniques. The data showed that the structure was similar to [HRh(CO)(PPh3)3]. The catalytic activity and selectivity of [HRh(CO)(DPM)3] in styrene hydroformylation were studied in biphasic catalytic systems.420 421 Rh1 complexes [Rh(acac)(CO)(PR3)] with tpa (131), cyep (132), (126), ompp (133), pmpp (134), tmpp (135), PPh2(pyl), PPh(pyl)2, and P(pyl)3 were characterized with NMR and IR spectra. Complexes with (131), (132), and (126) were catalysts for hydrogenation of C—C and C—O bonds, isomerization of alkenes, and hydroformylation of alkenes.422 Asymmetric hydroformylation of styrene was performed using as catalyst precursor [Rh(//-0 Me)(COD)]2 associated with sodium salts of m-sulfonated diarylphosphines.423... [Pg.177]

A number of metals catalyze the hydroformylation reaction, of which rhodium is by far the most active, Rh >> Co > Ir, Ru > Os > Pt. Platinum and ruthenium are mainly of academic interest, although L2PtCl(SnCl3) complexes with chiral ligands find use in asymmetric alkene hydroformylations.59 In most cases, and certainly in industrial processes, cobalt has now been replaced by rhodium. [Pg.1254]

The enantioselective hydrocyanation of alkenes has the potential to serve as an efficient method to generate optically active nitriles, as well as amides, esters, and amines after functional group interconversions of the nitrile group. As in asymmetric hydroformylation, asymmetric hydrocyanation requires control of both regiochemistry and stereochemistry because simple olefins tend to generate achiral terminal nitrile products. The hydrocyanation of norbomene will give a single constitutional isomer and was studied initially. However, modest enantioselectivities were obtained, and the synthetic value is limited. ... [Pg.674]

These systems have mainly been applied to asymmetric hydroformylation [29], although their strength in normal alkene hydroformylation rests in their high selectivity for linear aldehyde. [Pg.8]

The rates of olefin hydrogenation and isomerization by Group VIII metal-phosphine complexes are increased by the presence of hydroperoxides and/or oxygen. A similar rate enhancement is observed in the hydroformylation of alkenes catalysed by [RhCl(CO)(PPh3)2]. The addition of small amounts of cyclohexenyl hydroperoxide is considered to effect the unusual transformation of [RhCl(CO)(PPh3)2] to cw-[RhCl(CO)2(PPh3)], which appears to be a very active alkene hydroformylation and isomerization catalyst. Asymmetric induction in hydroformylation reactions has been achieved. ... [Pg.419]

The major problem remains control of regioselectivity in favor of the branched regioisomer. While aryl alkenes as well as heteroatom-substituted alkenes favor the chiral branched isomer, for aliphatic alkenes such an intrinsic element of regiocontrol is not available. As a matter of fact branched-selective and asymmetric hydroformylation of aliphatic alkenes stands as an unsolved problem. In this respect regio- and enantioselective hydroformy-... [Pg.161]

Although significant progress in the field of asymmetric hydroformylation has been made, it is limited to a rather narrow substrate scope. An alternative approach to a stereoselective hydroformylation might employ substrate control of a chiral alkenic starting material. Of particular use... [Pg.162]

The cA-PtCl2(diphosphine)/SnCl2 constitutes the system mostly used in catalyzed hydroformylation of alkenes and many diphosphines have been tested. In the 1980s, Stille and co-workers reported on the preparation of platinum complexes with chiral diphosphines related to BPPM (82) and (83) and their activity in asymmetric hydroformylation of a variety of prochiral alkenes.312-314 Although the branched/normal ratios were low (0.5), ees in the range 70-80% were achieved in the hydroformylation of styrene and related substrates. When the hydroformylation of styrene, 2-ethenyl-6-methoxynaphthalene, and vinyl acetate with [(-)-BPPM]PtCl2-SnCl2 were carried out in the presence of triethyl orthoformate, enantiomerically pure acetals were obtained. [Pg.166]

Platinum(II) complexes with diphosphines based on DIOP (85),315-321 CHIRAPHOS (86),316,320 and bdpp (87)322-325 backbones have been prepared to be used, in the presence of SnCl2, as catalyst precursors in asymmetric hydroformylation of styrene and other alkenes. [Pg.166]

In 1992, an important breakthrough appeared in the patent literature when Babin and Whiteker at Union Carbide reported the asymmetric hydroformylation of various alkenes with ees up to 90%, using bulky diphosphites derived from homochiral (2i ,4R)-pentane-2, 4-diol, UC-PP (1 19).359 360 van Leeuwen et al. studied these systems extensively. The influence of the bridge length, of the bulky substituents and the cooperativity of chiral centers on the performance of the catalyst has been reported.217 218 221 361-363... [Pg.172]

Experimental evidence of the —S03" H0Si— interaction have been obtained from IR, Rh K-edge EXAFS, and CP MAS 3 IP NMR studies. These supported catalysts have been tested for the hydrogenation and hydroformylation of alkenes. No Rh leaching was observed.128-130 An extension to the immobilization of chiral metal complexes for asymmetric hydrogenation is reported below. [Pg.456]

Special reactions Haber process, exhaust clean up etc. Hydroformylation of alkenes, methanol carbonylation, asymmetric synthesis etc... [Pg.2]

The first report to use diphosphite ligands in the asymmetric hydroformylation of vinyl arenes revealed no asymmetric induction [46]. An important breakthrough came in 1992 when Babin and Whiteker at Union Carbide patented the asymmetric hydroformylation of various alkenes with ee s up to 90%, using bulky diphosphites 2a-c derived from homochiral (2R, 4R)-pentane-2,4-diol (Scheme 4) [17]. Their early results showed that (a) bulky substituents are required at the ortho positions of the biphenyl moieties for good regio- and enantio-selectivity and (b) methoxy substituents in the para positions of the biphenyl moieties always produced better enantio-selectivities than those observed for the corresponding ferf-butyl-substituted analogues. [Pg.51]

The asymmetric hydroformylation of functionalized aliphatic alkenes is generally more difficult than the hydroformylation of vinyl arenes. The rhodium-catalyzed hydroformylation of vinyl acetate (36) yields 2- and 3-acetoxypropanals, 37 and 38, with high chemoselectivity. Ethyl acetate and acetic acid can also be found as by-products. One of the potential applications of vinyl acetate hydroformylation is the production of enantiopure propane 1,2-diol (Scheme 6). [Pg.61]

The hydroformylation reaction ( oxo reaction ) of alkenes with hydrogen and carbon monoxide is established as an important industrial tool for the production of aldehydes ( oxo aldehydes ) and products derived there from [1-6]. This method also leads to synthetically useful aldehydes and more recently is widely applied in the synthesis of more complex target molecules [7-15,17], including stereoselective and asymmetric syntheses [18-22]. [Pg.75]

Breit B (2007) Directed Rhodiiun-Catalyzed Hydroformylation of Alkenes. 24 145-168 Breuzard JAJ, Christ-Tommasino ML, Lemaire M (2005) Chiral Ureas and Thiroureas in Asymmetric Catalysis. 15 231-270 Briiggemann M, see Hoppe D (2003) 5 61-138... [Pg.194]

Asymmetric Hydroformylation of Other Olefins In contrast to vinylarenes, the asymmetric hydroformylation of aliphatic alkenes, especially 1-aIkenes, is still very challenging, although the Rh-BINAPHOS (5a) catalyst has made significant improvement in enantioselectivity as compared to that achieved by previous catalysts. Representative results are summarized in Scheme 4.5. The reaction of... [Pg.107]

In contrast to the normal-scXcctwc hydroformylation mainly developed in industry, asymmetric hydroformylation, which requires /i o-aldehydes ( branched aldehydes) to be formed from I-alkenes, was first examined in the early 1970s by four groups independently, using Rh(i) complexes of chiral phosphines as catalysts. " Since then, a number of chiral ligands have been employed for asymmetric hydroformylation and used in combination with transition metal ions, especially Pt(ii) and Rh(i). Asymmetric hydroformylation of I-alkenes is most extensively studied. [Pg.439]


See other pages where Alkenes asymmetric hydroformylation is mentioned: [Pg.930]    [Pg.819]    [Pg.60]    [Pg.230]    [Pg.184]    [Pg.171]    [Pg.1037]    [Pg.149]    [Pg.162]    [Pg.168]    [Pg.169]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.190]    [Pg.49]    [Pg.166]    [Pg.412]    [Pg.108]    [Pg.108]    [Pg.112]    [Pg.480]    [Pg.447]    [Pg.467]    [Pg.232]    [Pg.296]   


SEARCH



Alkene hydroformylation, asymmetric catalysis

Alkenes asymmetric

Alkenes hydroformylation

Asymmetric hydroformylation

Asymmetrical alkene

Hydroformylations asymmetric

© 2024 chempedia.info