Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes electrophilic substitution

There are a wide variety of methods for introduction of substituents at C3. Since this is the preferred site for electrophilic substitution, direct alkylation and acylation procedures are often effective. Even mild electrophiles such as alkenes with EW substituents can react at the 3-position of the indole ring. Techniques for preparation of 3-lithioindoles, usually by halogen-metal exchange, have been developed and this provides access not only to the lithium reagents but also to other organometallic reagents derived from them. The 3-position is also reactive toward electrophilic mercuration. [Pg.105]

Toluene, an aLkylben2ene, has the chemistry typical of each example of this type of compound. However, the typical aromatic ring or alkene reactions are affected by the presence of the other group as a substituent. Except for hydrogenation and oxidation, the most important reactions involve either electrophilic substitution in the aromatic ring or free-radical substitution on the methyl group. Addition reactions to the double bonds of the ring and disproportionation of two toluene molecules to yield one molecule of benzene and one molecule of xylene also occur. [Pg.175]

Hydrochlorination. The addition of hydrogen chloride to alkenes in the absence of peroxides takes place by an electrophilic substitution mechanism. The orientation is in accord -with Markovnikov s mle in -which the hydrogen atom adds to the side of the double bond that -will result in the... [Pg.508]

Accordingly, they do not easily add to reagents such as halogens and acids as do alkenes. Aromatic hydrocarbons are susceptible, however, to electrophilic substitution reactions in presence of a catalyst. [Pg.38]

Electrophilic substitution of the ring hydrogen atom in 1,3,4-oxadiazoles is uncommon. In contrast, several reactions of electrophiles with C-linked substituents of 1,3,4-oxadiazole have been reported. 2,5-Diaryl-l,3,4-oxadiazoles are bromi-nated and nitrated on aryl substituents. Oxidation of 2,5-ditolyl-l,3,4-oxadiazole afforded the corresponding dialdehydes or dicarboxylic acids. 2-Methyl-5-phenyl-l,3,4-oxadiazole treated with butyllithium and then with isoamyl nitrite yielded the oxime of 5-phenyl-l,3,4-oxadiazol-2-carbaldehyde. 2-Chloromethyl-5-phenyl-l,3,4-oxadiazole under the action of sulfur and methyl iodide followed by amines affords the respective thioamides. 2-Chloromethyl-5-methyl-l,3,4-oxadia-zole and triethyl phosphite gave a product, which underwent a Wittig reation with aromatic aldehydes to form alkenes. Alkyl l,3,4-oxadiazole-2-carboxylates undergo typical reactions with ammonia, amines, and hydrazines to afford amides or hydrazides. It has been shown that 5-amino-l,3,4-oxadiazole-2-carboxylic acids and their esters decarboxylate. [Pg.420]

The synthesis of polyhalide salts, R4NX , used in electrophilic substitution reactions, are described in Chapter 2 and H-bonded complexed salts with the free acid, R4NHX2, which are used for example in acid-catalysed cleavage reactions and in electrophilic addition reactions with alkenes, are often produced in situ [33], although the fluorides are obtained by modification of method I.I.I.B. [19, 34], The in situ formation of such salts can inhibit normal nucleophilic reactions [35, 36]. Quaternary ammonium chlorometallates have been synthesized from quaternary ammonium chlorides and transition metal chlorides, such as IrClj and PtCl4, and are highly efficient catalysts for phase-transfer reactions and for metal complex promoted reactions [37]. [Pg.4]

Another group of bicyclic aliphatic phosphines has been introduced by Sasol [15], Their ligands are based on addition of PH3 to limonene (the R-enantiomer). A mixture of two diastereomeric compounds is obtained due to the two configurations of the methyl group at the C-4 position (Figure 7.9). The Lim-H compounds obtained can be functionalised at the phosphorus atom with the usual radical reactions with alkenes or substitution reactions of their conjugate bases formed after treatment with BuLi with electrophiles. [Pg.136]

An example of the first type of study is the cationic pol erization of alkenes and heterocyclic monomers in the presence of 2-alWlfurans. As discussed above, electrophilic substitution at C5 is quite facile with these compounds and one can therefore prepare monofunctional oligomers bearing a furanic end-group. By a judicious choice of experimental conditions this transfer reaction will predominate over all other chain-breaking events and virtually all the chains will have the same terminal structure, i.e. a 5-oligomer-2-al lfuran. Structure 32 illustrates this principle with isobutyl vinyl ether oligomers capped by 2-methylfuran ... [Pg.207]

Benzofuran in boiling dioxane and acetic acid, in the presence of equimolar proportions of styrene and palladium(II) aeetate, yields 2,3-diphenyl-dibenzofuran (26%) as well as 2-styryl- (16%) and 3-styrylbenzofuran (3%). The reaction presumably involves electrophilic substitution at the 2-position of benzofuran by palladium(II) acetate, followed by addition to the alkene and loss of palladium hydride. Further reaction at the 3-position of the resultant 2-styrylbenzofuran would yield an intermediate that could undergo... [Pg.41]

Step (1) is reminiscent of electrophilic addition to an alkene. Aromatic substitution differs in that the intermediate carbocation (a benzenonium ion) loses a cation (most often to give the substitution product, rather than adding a nucleophile to give the addition product. The benzenonium ion is a specific example of an arenonium ion, formed by electrophilic attack on an arene (Section 11.4). It is also called a sigma complex, because it arises by formation of a o-bond between E and the ring. See Fig. 11-1 for a typical enthalpy-reaction curve for the nitration of an arene. [Pg.215]

Problem 11.5 Since the initial step of aromatic electrophilic substitution is identical with that of alkene addition, explain why (a) aromatic substitution is slower than alkene addition (b) catalysts are needed for aromatic substitution (c) the intermediate carbocation eliminates a proton instead of adding a nucleophile. [Pg.217]

Activation of the alkene and electrophilic substitution, where the furan (electron-rich) would act as a nucleophile. [Pg.444]

To some degree we have oversimplified electrophilic substitution by neglecting the possible role of the l l charge-transfer complexes that most electrophiles form with arenes (see Section 10-30 for discussion of analogous complexes of alkenes) ... [Pg.1044]

The major focus in this chapter will be on synthesis, with emphasis placed on more recent applications, particularly those where regiochemistry and stereochemistry are precisely controlled. The reader is referred to the earlier reviews for full mechanistic information and details of historic interest. Electrophilic addition of X—Y to an alkene, where X is the electrophile, gives products with functionality Y (3 to the heteroatom X. Further transformations of X and/or Y provide the basis for diverse synthetic applications. These transformations include replacement of Y by hydrogen, elimination to form a ir-bond (either including the carbon bonded to X or (3 to that carbon so that X is now in an allylic position), and nucleophilic or radical substitution. Representative examples of these synthetic methods will be given below. This chapter will include examples of heterocycles formed in one-pot reactions where the the initial alkene-electrophile adduct contains an electrophilic group that can react further. Examples of heterocycles formed in several steps from alkene-electrophile adducts will also be considered. Cases in which activation by an external electrophile directly results in addition of an internal heteroatom nucleophile are treated in Chapter 1.9 of this volume. [Pg.330]

Cyclopropane formation occurs from reactions between diazo compounds and alkenes, catalyzed by a wide variety of transition-metal compounds [7-9], that involve the addition of a carbene entity to a C-C double bond. This transformation is stereospecific and generally occurs with electron-rich alkenes, including substituted olefins, dienes, and vinyl ethers, but not a,(J-unsaturated carbonyl compounds or nitriles [23,24], Relative reactivities portray a highly electrophilic intermediate and an early transition state for cyclopropanation reactions [15,25], accounting in part for the relative difficulty in controlling selectivity. For intermolecular reactions, the formation of geometrical isomers, regioisomers from reactions with dienes, and enantiomers must all be taken into account. [Pg.195]


See other pages where Alkenes electrophilic substitution is mentioned: [Pg.441]    [Pg.441]    [Pg.90]    [Pg.549]    [Pg.158]    [Pg.338]    [Pg.10]    [Pg.276]    [Pg.196]    [Pg.41]    [Pg.175]    [Pg.307]    [Pg.94]    [Pg.503]    [Pg.105]    [Pg.71]    [Pg.64]    [Pg.450]    [Pg.52]    [Pg.130]    [Pg.64]    [Pg.281]    [Pg.607]    [Pg.1037]    [Pg.1041]    [Pg.549]    [Pg.588]    [Pg.619]    [Pg.13]    [Pg.213]   
See also in sourсe #XX -- [ Pg.855 ]




SEARCH



Alkenes substitution

Alkenes, electrophilic

© 2024 chempedia.info