Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaloids Michael-additions

Pyroglntamic acid is a useful starting material for the synthesis of several naniral products, such as pyrtolidme alkaloids, kainoids, and other unnaniral amino acids. Interesting chemose-lecdve Michael additions of anions derived from pyroglntamates have been reported fsee Eqs. 4.54 and4.55. ... [Pg.89]

The Michael addition of the copper-zinc reagent derived from ethyl 4-bromobntyrate to the plperonal-derived nitroalkene proceeds cleaniy to give the nitre ester, which is an intermediate for the synthesis of lycoricidine alkaloids fEq. 4.85. ... [Pg.98]

The Michael addition of the carbanions derived from esters to nitroalkenes followed by reductive cycLizadon has been used extensively for the preparation of pyrrondin-3-ones fEq 1076 This strategy is used for synthesis of the carbaaole alkaloid staurosporine aglycon CK-352c ... [Pg.352]

Langer and coworkers constructed diverse O- and N-heterocydic scaffolds, such as y-alkylidene-a-hydroxybutenolides and pyrrolo[3,2-b]pyrrol-2,5-diones, exploiting the well-established cyclization strategy of bisnucleophiles with oxalic acid derivatives [163], while Stockman s research group reported in this context on a novel oxime formation/Michael addition providing the structural core of the alkaloid perhydrohistrionicotoxin [164]. [Pg.94]

A combination of a reductive amination and a Michael addition has been used to synthesize the anticancer alkaloid camptothecin (2-955) via 2-954, starting from the quinoline carbaldehyde 2-953 and benzylamine (Scheme 2.214) [487]. [Pg.194]

The asymmetric Michael addition of 1,3-dicarbonyl compounds to nitrostyrene is promoted by chiral alkaloid catalysts to give the addition products in good chemical yield, but the enantioselectivity is rather low (Eq. 4.47).62... [Pg.86]

The sequential process consisting of palladium-catalyzed alkylation and the intramolecular Michael addition of nitro compound provides a nitrocyclohaxane derivative, which is a good precursor for synthesis of Erythrina alkaloids (Eq. 4.131).179... [Pg.115]

Catalytic enantioselective nucleophilic addition of nitroalkanes to electron-deficient alke-nes is a challenging area in organic synthesis. The use of cinchona alkaloids as chiral catalysts has been studied for many years. Asymmetric induction in the Michael addition of nitroalkanes to enones has been carried out with various chiral bases. Wynberg and coworkers have used various alkaloids and their derivatives, but the enantiomeric excess (ee) is generally low (up to 20%).199 The Michael addition of methyl vinyl ketone to 2-nitrocycloalkanes catalyzed by the cinchona alkaloid cinchonine affords adducts in high yields in up to 60% ee (Eq. 4.137).200... [Pg.118]

Matsumoto and coworkers have introduced a new strategy for asymmetric induction under high pressure. The Michael addition of nitromethane to chalcone is performed at 10 kbar in the presence of a catalytic amount of chiral alkaloids. The extent of asymmetric induction reaches up to 50% ee with quinidine in toluene.201... [Pg.118]

Another Michael addition route for synthesis of the pyrrolizidine alkaloide trachelan-thamidin is shown in Scheme 10.18.118... [Pg.351]

A novel spiropentanopyrrolizidine oxime has been isolated from skin extracts of the Panamanian poison frog. This alkaloid can be synthesized via the Michael addition of cyclopen-tanecarboxaldehyde to nitroethene (Scheme 10.19).119... [Pg.351]

The tandem intramolecular Michael addition and 1,3-cycloaddition reactions of the corresponding alkenyl oxime have been used for the synthesis of the tricyclic core of the alkaloid halichlorine (Scheme 2.232) (728). [Pg.313]

Ley SV, Baxendale IR (2002b) New tools and concepts for modern organic synthesis. Nat Rev Drug Disc 1 573-586 Ley S V, Massi A (2000) J Comb Chem Polymer supported reagents in synthesis preparation of bicyclo[2.2.2]octane derivatives via tandem michael addition reactions and subsequent combinatorial decoration. 2 104—107 Ley SV, Schucht O, Thomas AW, Murray PJ (1999) Synthesis of the alkaloids ( )-oxomaritidine and ( )-epimaritidine using an orchestrated multi-step sequence of polymer supported reagents. J Chem Soc Perkin Trans 1 1251— 1252... [Pg.183]

The utilization of the Robinson annellation method for the synthesis of cory-nanthe-type alkaloids has been thoroughly investigated by Kametani and coworkers (149-152). The tetracyclic ring system was efficiently formed via the Michael addition of dimethyl 3-methoxyallylidenemalonate (247) to the enamine derived from 3,4-dihydro-1 -methyl-(3-carboline (150). Alkylation of 248, followed by hydrolysis and decarboxylation, resulted in a mixture of stereosiomeric enamides 250 and 251. Hydrogenation of 250 afforded two lactams in a ratio of 2 1 in favor of the pseudo stereoisomer 253 over the normal isomer 252. On the other hand, catalytic reduction of 251 gave 254 as the sole product in nearly quantitative yield. Deprotection of 254, followed by lithium aluminum hydride reduction, yielded ( )-corynantheidol (255) with alio relative configuration of stereo centers at C-3, C-15 and C-20. Similar transformations of 252 and 253 lead to ( )-dihydrocorynantheol and ( )-hirsutinol (238), respectively, from which the latter is identical with ( )-3-epidihydrocorynantheol (149-151.). [Pg.187]

R. S. E. Conn, A. V. Lovell, S. Karady, L. M. Weinstock, Chiral Michael Addition Methyl Vinyl Ketone Addition Catalyzed by Cinchona Alkaloid Derivatives , J. Org Chem. 1986, 51, 4710-4711. [Pg.142]

Several examples exist of the application of chiral natural N-compounds in base-catalyzed reactions. Thus, L-proline and cinchona alkaloids have been applied [35] in enantioselective aldol condensations and Michael addition. Techniques are available to heterogenize natural N-bases, such as ephedrine, by covalent binding to mesoporous ordered silica materials [36]. [Pg.114]

Asymmetric induction of the Michael addition of thiols to electron-deficient alkenes (4.6.1) has been achieved in high overall conversion using both free [e.g. 12-20] and polymer-supported [e.g. 21, 22] cinchona alkaloids and their salts [23-25], but with varying degrees of optical purity. The corresponding asymmetric Michael addition of selenophenols to cyclohex-2-enones is promoted by cinchoni-dine to give a chiral product (43% ee) [26],... [Pg.535]

The majority of the Michael-type conjugate additions are promoted by amine-based catalysts and proceed via an enamine or iminium intermediate species. Subsequently, Jprgensen et al. [43] explored the aza-Michael addition of hydra-zones to cyclic enones catalyzed by Cinchona alkaloids. Although the reaction proceeds under pyrrolidine catalysis via iminium activation of the enone, and also with NEtj via hydrazone activation, both methods do not confer enantioselectivity to the reaction. Under a Cinchona alkaloid screen, quinine 3 was identified as an effective aza-Michael catalyst to give 92% yield and 1 3.5 er (Scheme 4). [Pg.151]

The scope of Michael additions with catalysts containing cyclohexane-diamine scaffolds was broadened by Li and co-workers [95]. When screening for a catalyst for the addition of phenylthiol to a,p-nnsatnrated imides, the anthors fonnd that thiourea catalyst 170 provided optimal enantioselectivities when compared to Cinchon alkaloids derivatives (Scheme 41). Electrophile scope inclnded both cyclic and acyclic substrates. Li attributed the enantioselectivity to activation of the diketone electrophiles via hydrogen-bonding to the thiourea, with simultaneous deprotonation of the thiol by the tertiary amine moiety of the diamine (170a and 170b). Based on the observed selectivity, the anthors hypothesized that the snbstrate-catalyst... [Pg.174]

Wang and co-workers reported a novel class of organocatalysts for the asymmetric Michael addition of 2,4-pentandiones to nitro-olefms [131]. A screen of catalyst types showed that the binaphthol-derived amine thiourea promoted the enantiose-lective addition in high yield and selectivity, unlike the cyclohexane-diamine catalysts and Cinchona alkaloids (Scheme 77, Table 5). [Pg.195]

Figure 6.36 Bifunctionality of cinchona alkaloids (A) and Wynberg s proposal for the transition state of the cinchonidine-catalyzed Michael addition of 4-tert-butylthiophenol to 5,5-dimethyl-2-cyclohexenone (B). Figure 6.36 Bifunctionality of cinchona alkaloids (A) and Wynberg s proposal for the transition state of the cinchonidine-catalyzed Michael addition of 4-tert-butylthiophenol to 5,5-dimethyl-2-cyclohexenone (B).
The Chen group early in 2005 constituted the novel class of thiourea-function-ahzed cinchona alkaloids with the first reported synthesis and application of thioureas 116 (8R, 9S) and 117 (8R, 9R) prepared from cinchonidine and cinchonine in over 60% yield, respectively (Scheme 6.112) [273]. In the Michael addition of thiophenol to an a,(5-unsaturated imide, the thioureas 116 and 117 displayed only poor stereoinduction (at rt 116 7% ee 117 17% ee), but high catalytic activity (99% yield/2h) (Scheme 6.112). [Pg.256]

Scheme 6.112 Michael addition of thiophenol to an a,p-unsaturated imide catalyzed by cinchonidine-derived thiourea 116 and cinchonine-derived thiourea 117, the first representatives of this class of bifunctional hydrogen-bonding cinchona alkaloid-thioureas. Scheme 6.112 Michael addition of thiophenol to an a,p-unsaturated imide catalyzed by cinchonidine-derived thiourea 116 and cinchonine-derived thiourea 117, the first representatives of this class of bifunctional hydrogen-bonding cinchona alkaloid-thioureas.
The Soos group, in 2005, prepared the first thiourea derivatives from the cinchona alkaloids quinine QN (8S, 9R-121), dihydroquinidine DHQD (8S, 9S-122), C9-epi-QN (8S, 9P-123), and quinidine QD (SR, 9R-124) via an experimentally simple one-step protocol with epimerization at the C9-position of the alkaloid starting material (Figure 6.39) [278]. The catalytic efficiency of these new thiourea derivatives and also of unmodified QN and C9-epi-QN was evaluated in the enan-tioselective Michael addition [149-152] of nitromethane to the simple model chal-cone 1,3-diphenyl-propenone resulting in adduct 1 in Scheme 6.119. After 99h reaction time at 25 °C in toluene and at 10 mol% catalyst loading QN turned out to be a poor catalyst (4% yield/42% ee (S)-adduct) and C9-epi-QN even failed to accelerate the screening reaction. In contrast, the C9-modified cinchona alkaloid... [Pg.261]

Figure 6.39 Cinchona alkaloid-thioureas prepared from quinine (121), dihydroquinine (122), C9-epi-quinine (123), and quinidine (124) catalytic efficiency evaluated in the Michael addition of nitromethane to tram-chalcone 1,3-diphenyl-propenone at 10mol% loading and rt. Figure 6.39 Cinchona alkaloid-thioureas prepared from quinine (121), dihydroquinine (122), C9-epi-quinine (123), and quinidine (124) catalytic efficiency evaluated in the Michael addition of nitromethane to tram-chalcone 1,3-diphenyl-propenone at 10mol% loading and rt.

See other pages where Alkaloids Michael-additions is mentioned: [Pg.56]    [Pg.56]    [Pg.987]    [Pg.71]    [Pg.117]    [Pg.163]    [Pg.347]    [Pg.33]    [Pg.56]    [Pg.156]    [Pg.230]    [Pg.50]    [Pg.168]    [Pg.337]    [Pg.147]    [Pg.260]    [Pg.255]    [Pg.263]    [Pg.263]    [Pg.279]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Cinchona alkaloid catalysts Michael addition

Cinchona alkaloid-based catalysts Michael addition

Cinchona alkaloids enantioselective Michael addition, base

Enantioselective Michael addition alkaloids

Indole alkaloids synthesis via Michael addition

Michael addition cinchona-alkaloid-catalysed

© 2024 chempedia.info