Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaline exchange membrane fuel cells

Fuel cell applications Manganese dioxide as a new cathode catalyst in microbial fuel cells [118] OMS-2 catalysts in proton exchange membrane fuel cell applications [119] An improved cathode for alkaline fuel cells [120] Nanostructured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell [121] Carbon-supported tetragonal MnOOH catalysts for oxygen reduction reaction in alkaline media [122]... [Pg.228]

There are six different types of fuel cells (Table 1.6) (1) alkaline fuel cell (AFC), (2) direct methanol fuel cell (DMFC), (3) molten carbonate fuel cell (MCFC), (4) phosphoric acid fuel cell (PAFC), (5) proton exchange membrane fuel cell (PEMFC), and (6) the solid oxide fuel cell (SOFC). They all differ in applications, operating temperatures, cost, and efficiency. [Pg.17]

DMFCs and direct ethanol fuel cells (DEFCs) are based on the proton exchange membrane fuel cell (PEM FC), where hydrogen is replaced by the alcohol, so that both the principles of the PEMFC and the direct alcohol fuel cell (DAFC), in which the alcohol reacts directly at the fuel cell anode without any reforming process, will be discussed in this chapter. Then, because of the low operating temperatures of these fuel cells working in an acidic environment (due to the protonic membrane), the activation of the alcohol oxidation by convenient catalysts (usually containing platinum) is still a severe problem, which will be discussed in the context of electrocatalysis. One way to overcome this problem is to use an alkaline membrane (conducting, e.g., by the hydroxyl anion, OH ), in which medium the kinetics of the electrochemical reactions involved are faster than in an acidic medium, and then to develop the solid alkaline membrane fuel cell (SAMFC). [Pg.5]

After rehearsing the working principles and presenting the different kinds of fuel cells, the proton exchange membrane fuel cell (PEMFC), which can operate from ambient temperature to 70-80 °C, and the direct ethanol fuel cell (DEFC), which has to work at higher temperatures (up to 120-150 °C) to improve its electric performance, will be particularly discussed. Finally, the solid alkaline membrane fuel cell (SAMFC) will be presented in more detail, including the electrochemical reactions involved. [Pg.5]

SOFC = solid oxide fuel cell MCFC = molten carbonate fuel cell PAFC = phosphoric acid fuel cell AFC = alkaline fuel cell PEMFC = proton exchange membrane fuel cell DMFC = direct methanol fuel cell SAMFC = Solid alkaline membrane fuel cell. [Pg.16]

Fuel cells can be broadly classified into two types high temperature fuel cells such as molten carbonate fuel cells (MCFCs) and solid oxide polymer fuel cells (SOFCs), which operate at temperatures above 923 K and low temperature fuel cells such as proton exchange membrane fuel cells (PEMs), alkaline fuel cells (AFCs) and phosphoric acid fuel cells (PAFCs), which operate at temperatures lower than 523 K. Because of their higher operating temperatures, MCFCs and SOFCs have a high tolerance for commonly encountered impurities such as CO and CO2 (CO c)- However, the high temperatures also impose problems in their maintenance and operation and thus, increase the difficulty in their effective utilization in vehicular and small-scale applications. Hence, a major part of the research has been directed towards low temperature fuel cells. The low temperature fuel cells unfortunately, have a very low tolerance for impurities such as CO , PAFCs can tolerate up to 2% CO, PEMs only a few ppm, whereas the AFCs have a stringent (ppm level) CO2 tolerance. [Pg.174]

Note PAFC phosphoric acid fuel cell PEMFC proton exchange membrane fuel cell/polymer electrolyte membrane fuel cell MBFC microbiological fuel cell DMFC direct methanol conversion fuel cell AFC alkaline fuel cell MCFC molten carbonate fuel cell SOFC solid oxide fuel cell ZAFC zinc air fuel cell. [Pg.71]

Fig. 13.27. Potential vs. current density plots for state-of-the-art fuel cells, o, proton exchange membrane fuel cell , solid oxide fuel cell , pressurized phosphonic acid fuel cell (PAFC) a, direct methanol fuel cell, direct methanol PAFC , alkaline fuel cell. (Reprinted from M. A. Parthasarathy, S. Srinivasan, and A. J. Appleby, Electrode Kinetics of Oxygen Reduction at Carbon-Supported and Un-supported Platinum Microcrystal-lite/Nafion Interfaces, J. Electroanalytical Chem. 339 101-121, copyright 1992, p. 103, Fig. 1, with permission from Elsevier Science.)... Fig. 13.27. Potential vs. current density plots for state-of-the-art fuel cells, o, proton exchange membrane fuel cell , solid oxide fuel cell , pressurized phosphonic acid fuel cell (PAFC) a, direct methanol fuel cell, direct methanol PAFC , alkaline fuel cell. (Reprinted from M. A. Parthasarathy, S. Srinivasan, and A. J. Appleby, Electrode Kinetics of Oxygen Reduction at Carbon-Supported and Un-supported Platinum Microcrystal-lite/Nafion Interfaces, J. Electroanalytical Chem. 339 101-121, copyright 1992, p. 103, Fig. 1, with permission from Elsevier Science.)...
In cases where high purity hydrogen is valued, dense metal membranes are an attractive option over polymeric membranes and porous membranes that exhibit much lower selectivities. Two examples where this is true are low-temperature fuel cells (e.g., proton exchange membrane fuel cells [PEMFCs] and alkaline fuel cells [AFCs]) and hydrogen-generating sites where the product hydrogen is to be compressed and stored for future use. [Pg.363]

Alkaline fuel cells have numerous advantages over proton exchange membrane fuel cells on both cathode kinetics and ohmic polarization [115]. [Pg.193]

There exist a variety of fuel cells. For practical reasons, fuel cells are classified by the type of electrolyte employed. The following names and abbreviations are frequently used in publications alkaline fuel cells (AFC), molten carbonate fuel cells (MCFC), phosphoric acid fuel cells (PAFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Among different types of fuel cells under development today, the PEMFC, also called polymer electrolyte membrane fuel cells (PEFC), is considered as a potential future power source due to its unique characteristics [1-3]. The PEMFC consists of an anode where hydrogen oxidation takes place, a cathode where oxygen reduction occurs, and an electrolyte membrane that permits the transfer of protons from anode to cathode. PEMFC operates at low temperature that allows rapid start-up. Furthermore, with the absence of corrosive cell constituents, the use of the exotic materials required in other fuel cell types is not required [4]. [Pg.340]

Olson TS, Pylypenko S, Atanassov P, Asazawa K, Yamada K, Tanaka H (2010) Anion-exchange membrane fuel cells dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. J Phys Chem C 114(11) 5049-5059... [Pg.478]

Arges, C.G., Ramani, V., and Pintauro, P.N. (2010) Anion exchange membrane fuel cells. Interface, 19 (2), 31-35. Gtilzow, E. (2003) Alkaline fuel cells. Fuel Cells, 4 (4), 251-255. [Pg.431]


See other pages where Alkaline exchange membrane fuel cells is mentioned: [Pg.25]    [Pg.25]    [Pg.235]    [Pg.57]    [Pg.160]    [Pg.398]    [Pg.28]    [Pg.20]    [Pg.125]    [Pg.378]    [Pg.334]    [Pg.285]    [Pg.9]    [Pg.335]    [Pg.709]    [Pg.182]    [Pg.5]    [Pg.306]    [Pg.145]    [Pg.408]    [Pg.214]    [Pg.89]    [Pg.238]    [Pg.437]    [Pg.438]    [Pg.474]    [Pg.689]    [Pg.56]    [Pg.150]    [Pg.56]    [Pg.26]    [Pg.26]   


SEARCH



Alkaline cells

Alkaline fuel cells anion exchange membrane

Alkaline membrane

Anion Exchange Membranes for Alkaline Fuel Cells

Exchange membrane cells

Fuel alkaline

Fuel cell membrane

Fuel cells alkaline

Fuel cells exchange membrane

© 2024 chempedia.info