Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali metals Group hydrides

Carbon dispersed in liquid alkali metals is hydrided by the reaction with dissolved hydrogen or hydrides to evolve methane. Some reactions of non-metals dissolved in the molten metals are important for the compatibility of materials with the alkali metals. Transition metals are almost insoluble in molten alkali metals. Their solubilities can be considerably raised by dissolved non-metals. Several metals of the fourth and fifth group form one or more intermetallic compounds with alkali metals. [Pg.126]

Substances that catch fire spontaneously in air without an ignition source are called pyrophoric. These include several elements— white phosphorus, the alkali metals (group lA), and powdered forms of magnesium, calcium, cobalt, manganese, iron, zirconium, and aluminum. Also included are some organometallic compounds, such as ethyllithium (LiC2H5) and phenyllithium (LiQHj), and some metal carbonyl compounds such as iron pentacarbonyl, Fe(CO)5. Another major class of pyrophoric compounds consists of metal and metalloid hydrides, including lithium hydride, LiH ... [Pg.388]

Hydrogen can be prepared by the reaction of water or dilute acids on electropositive metals such as the alkali metals, alkaline earth metals, the metals of Groups 3, 4 and the lanthanoids. The reaction can be explosively violent. Convenient laboratory methods employ sodium amalgam or calcium with water, or zinc with hydrochloric acid. The reaction of aluminium or ferrosilicon with aqueous sodium hydroxide has also been used. For small-scale preparations the hydrolysis of metal hydrides is convenient, and this generates twice the amount of hydrogen as contained in the hydride, e.g. ... [Pg.38]

Perhaps of more significance is a detailed study132 into the reductive desulphonylation of 7-methyl-7-phenylsulphonylestratrienes. The goal was stereoselective removal of the sulphonyl group, and hydride reductions, alkali-metal-amalgam reductions and electrochemical reductions were explored. The latter proved to be the most effective and the best results are illustrated in Scheme 3. [Pg.963]

A final group of reactions are those involving water. A wide variety of materials such as the alkali metals light metals and their hydrides strong acids, such as sulphuric acid anhydrous metal oxides anhydrous metal halides and non-metal oxides ail react vigorously or violently with water under various circumstances. [Pg.360]

Another salt-like group of compounds that have acid-base properties is the hydrides of the alkali metals and calcium, strontium, and barium. These hydrides will react with water to form the hydroxide ion and hydrogen gas ... [Pg.226]

A first group of hydrides (ionic hydrides) is formed with the more electropositive elements of the 5-block of the Periodic Table. This group of hydrides includes the salt-like MeH (Me+H ) NaCl-type compounds of the alkali metals and the di-hydrides (Co2Si-type) formed by the divalent metals Ca, Sr, Ba and also by Eu and Yb. The thermal stability of these hydrides decreases from Li to Cs and from Ca to Ba the chemical reactivity on the contrary increases from Li to Cs and from Ca to Ba. While the reaction of NaH with water is very violent, the reaction of LiH or CaH2 can be used for a portable source of hydrogen. [Pg.326]

Elansari et al. [201] developed a novel method of synthesizing alkali metal hydrides Na, KH, RbH, and CsH by reactive mechanical milling of pure alkaline metals under hydrogen pressure up to 30 bars in a planetary mill (Retsch PM 400). The reaction proceeds in 16 h and gives 3-15 g of very pure alkali metal hydride with FCC crystal structure (space group Fm3m). [Pg.179]

Alkyl chlorides are with a few exceptions not reduced by mild catalytic hydrogenation over platinum [502], rhodium [40] and nickel [63], even in the presence of alkali. Metal hydrides and complex hydrides are used more successfully various lithium aluminum hydrides [506, 507], lithium copper hydrides [501], sodium borohydride [504, 505], and especially different tin hydrides (stannanes) [503,508,509,510] are the reagents of choice for selective replacement of halogen in the presence of other functional groups. In some cases the reduction is stereoselective. Both cis- and rrunj-9-chlorodecaIin, on reductions with triphenylstannane or dibutylstannane, gave predominantly trani-decalin [509]. [Pg.63]

The Hartree-Fock STO-3G model provides a generally reasonable account of equilibrium geometry in main-group hydrides. The worst results are for alkali metal compounds where, with the exception of NaH, calculated bond distances are significantly shorter than experimental values. Significant errors also appear for systems with two highly electronegative elements, e.g., for F2, where calculated bond distances are shorter than experimental values. [Pg.93]

Tetrahydroborates. The tetrahydroboranes constitute the most commercially important group of boron hydride compounds. Tetrahydroborates of most of the metals have been characterized and their preparations have been reviewed (46). The important commercial tetrahydroborates are those of the alkali metals. Some properties are given in Table 4. [Pg.238]

The main methods of reducing ketones to alcohols are (a) use of complex metal hydrides (b) use of alkali metals in alcohols or liquid ammonia or amines 221 (c) catalytic hydrogenation 14,217 (d) Meerwein-Ponndorf reduction.169,249 The reduction of organic compounds by complex metal hydrides, first reported in 1947,174 is a widely used technique. This chapter reviews first the main metal hydride reagents, their reactivities towards various functional groups and the conditions under which they are used to reduce ketones. The reduction of ketones by hydrides is then discussed under the headings of mechanism and stereochemistry, reduction of unsaturated ketones, and stereochemistry and selectivity of reduction of steroidal ketones. Finally reductions with the mixed hydride reagent of lithium aluminum hydride and aluminum chloride, with diborane and with iridium complexes, are briefly described. [Pg.302]

Alkali metal 1-methyl- and 1-phenyl-borinates are also available from bis(borinato)cobalt complexes (see below) on treatment with sodium or potassium cyanide in an aprotic solvent like acetonitrile. Cobalt cyanide precipitates and the alkali borinate remains in solution. After addition of thallium(I) chloride to some complexes, thallium 1-methyl- or 1-phenyl-borinate could be isolated as pale yellow solids, the only main group borinates isolated hitherto. They are insoluble in most organic solvents but readily soluble in pyridine and DMSO. The solids are stable on treatment with water and aqueous potassium hydride, but are decomposed by acids <78JOM(153)265). [Pg.643]

Reaction with Further Electrophiles of Group IVA (Sl,Ge,Sn). IV-Silylated aziridines can be prepared from ethyleneimine by amination of chlorosilanes in the presence of an HC1 acceptor, by dehydrocondensation with an organosilicon hydride or by cleavage of a silicon—carbon bond in 2-furyl-, 2-thienyl-, benzyl-, or allylsilanes in the presence of an alkali metal catalyst (262—266). N-Silylated aziridines can react with carboxylic anhydrides to give acylated aziridines, eg, A/-acetylaziridine [460-07-1] in high yields (267). At high temperatures, A/-silylaziridines can be dimerized to piperazines (268). Aldehydes can be inserted... [Pg.9]


See other pages where Alkali metals Group hydrides is mentioned: [Pg.138]    [Pg.55]    [Pg.57]    [Pg.65]    [Pg.377]    [Pg.278]    [Pg.377]    [Pg.28]    [Pg.380]    [Pg.906]    [Pg.224]    [Pg.970]    [Pg.417]    [Pg.65]    [Pg.762]    [Pg.1012]    [Pg.19]    [Pg.247]    [Pg.21]    [Pg.363]    [Pg.29]    [Pg.27]    [Pg.120]    [Pg.148]    [Pg.289]    [Pg.46]    [Pg.92]    [Pg.775]    [Pg.441]    [Pg.230]    [Pg.309]    [Pg.286]    [Pg.456]    [Pg.579]   
See also in sourсe #XX -- [ Pg.884 ]




SEARCH



Alkali group

Alkali hydrides

Alkali metals hydrides

Group hydrides

© 2024 chempedia.info