Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes reductive aminations, sodium cyanoborohydride

Figure 14.21 Aldehyde-particles can be reacted with amine-containing proteins or other molecules to form intermediate Schiff bases, which can be stabilized by reduction with sodium cyanoborohydride. Figure 14.21 Aldehyde-particles can be reacted with amine-containing proteins or other molecules to form intermediate Schiff bases, which can be stabilized by reduction with sodium cyanoborohydride.
Glutaraldehyde is the most popular bis-aldehyde homobifunctional cross-linker in use today. However, a glance at glutaraldehyde s structure is not indicative of the complexity of its possible reaction mechanisms. Reactions with proteins and other amine-containing molecules would be expected to proceed through the formation of Schiff bases. Subsequent reduction with sodium cyanoborohydride or another suitable re-ductant would yield stable secondary amine linkages (Chapter 2, Section 5.3, and Chapter 3, Section 4). This reaction sequence certainly is possible, but other cross-linking reactions also are feasible. [Pg.238]

Although Schiff base formation can be performed with amine groups, the low stability of the bond in aqueous conditions makes hydrazide a better alternative. Hydrazides can be introduced on the sensor surface via reaction of hydrazine or carbohydrazine to carboxylic groups after activation with EDC/NHS (Fig. 11) [32]. The hydrazide-aldehyde bond forms rapidly and is relatively stable in neutral to alkaline conditions, but disintegrates slowly in acidic buffers. If necessary, the bond can be further stabilized by reduction with sodium cyanoborohydride at pH 4. [Pg.129]

Sodium cyanoborohydride is remarkably chemoselective. Reduction of aldehydes and ketones are, unlike those with NaBH pH-dependent, and practical reduction rates are achieved at pH 3 to 4. At pH 5—7, imines (>C=N—) are reduced more rapidly than carbonyls. This reactivity permits reductive amination of aldehydes and ketones under very mild conditions (42). [Pg.304]

Schiff base interactions between aldehydes and amines typically are not stable enough to form irreversible linkages. These bonds may be reduced with sodium cyanoborohydride or a number of other suitable reductants (Chapter 2, Section 5) to form permanent secondary amine bonds. However, proteins crosslinked by glutaraldehyde without reduction nevertheless show stabilities unexplainable by simple Schiff base formation. The stability of such unreduced glutaraldehyde conjugates has been postulated to be due to the vinyl addition mechanism, which doesn t depend on the creation of Schiff bases. [Pg.134]

Aldehyde-containing macromolecules will react spontaneously with hydrazide compounds to form hydrazone linkages. The hydrazone bond is a form of Schiff base that is more stable than the Schiff base formed from the interaction of an aldehyde and an amine. The hydrazone, however, may be reduced and further stabilized by the same reductants utilized for reductive amination purposes (Chapter 3, Section 4.8). The addition of sodium cyanoborohydride to a hydrazide-aldehyde reaction drives the equilibrium toward formation of a stable covalent complex. Mallia (1992) found that adipic acid dihydrazide derivatization of periodate-oxidized dextran (containing multiple formyl functionalities) proceeds with much greater yield when sodium cyanoborohydride is present. [Pg.140]

The rather labile Schiff base interaction can be chemically stabilized by reduction. The addition of sodium borohydride or sodium cyanoborohydride to a reaction medium containing an aldehyde compound and an amine-containing molecule will result in reduction of the Schiff... [Pg.173]

Figure 7.11 Oxidation of glycoproteins with periodate, such as glycosylated antibodies, results in the formation of aldehyde groups that can be used for conjugation to dendrimers containing amine groups. Reductive amination with sodium cyanoborohydride results in coupling via secondary (or tertiary) amine bonds. Figure 7.11 Oxidation of glycoproteins with periodate, such as glycosylated antibodies, results in the formation of aldehyde groups that can be used for conjugation to dendrimers containing amine groups. Reductive amination with sodium cyanoborohydride results in coupling via secondary (or tertiary) amine bonds.
Aldehyde particles are spontaneously reactive with hydrazine or hydrazide derivatives, forming hydrazone linkages upon Schiff base formation. Reactions with amine-containing molecules, such as proteins, can be done through a reductive amination process using sodium cyanoborohydride (Figure 14.21). [Pg.617]

Hapten molecules containing aldehyde residues may be crosslinked to carrier molecules by use of reductive animation (Chapter 3, Section 4). At alkaline pH values, the aldehyde groups form intermediate Schiff bases with available amine groups on the carrier. Reduction of the resultant Schiff bases with sodium cyanoborohydride or sodium borohydride creates a stable conjugate held together by secondary amine bonds. [Pg.781]

In a fume hood, add 10 pi of 5M sodium cyanoborohydride (Sigma) per ml of reaction solution. Caution Cyanoborohydride is extremely toxic. All operations should be done with care in a fume hood. Also, avoid any contact with the reagent, as the 5M solution is prepared in IN NaOH. The addition of a reductant is necessary for stabilization of the Schiff bases formed between an amine-containing protein and the aldehydes on the antibody. For coupling to a hydrazide-activated protein, however, most protocols do not include a reduction step. Even so, hydrazone linkages may be further stabilized by cyanoborohydride reduction. The addition of a reductant during hydrazide/aldehyde reactions also increases the efficiency and yield of the reaction. [Pg.805]

Santagada and coworkers have disclosed a reductive amination method for the generation of a reduced peptide bond by reaction of a protected amino acid aldehyde with an N-deprotected amino ester using sodium cyanoborohydride as reducing agent [296]. [Pg.207]

Sodium cyanoborohydride NaBIpCN in methanol is the reagent of choice for the reductive alkylation of ammonia, primary aliphatic and aromatic amines and secondary aliphatic amines with aldehydes and relatively unhindered ketones (equation 53). [Pg.563]

Thioamides were converted to aldehydes by cautious desulfurization with Raney nickel [1137, 1138] or by treatment with iron and acetic acid [172]. More intensive desulfurization with Raney nickel [1139], electroreduction [172], and reduction with lithium aluminum hydride [1138], with sodium borohydride [1140] or with sodium cyanoborohydride [1140] gave amines in good to excellent yields. [Pg.171]


See other pages where Aldehydes reductive aminations, sodium cyanoborohydride is mentioned: [Pg.134]    [Pg.387]    [Pg.525]    [Pg.855]    [Pg.910]    [Pg.410]    [Pg.600]    [Pg.306]    [Pg.1406]    [Pg.390]    [Pg.580]    [Pg.305]    [Pg.234]    [Pg.139]    [Pg.195]    [Pg.21]    [Pg.49]    [Pg.150]    [Pg.166]    [Pg.231]    [Pg.362]    [Pg.385]    [Pg.779]    [Pg.801]    [Pg.802]    [Pg.870]    [Pg.950]    [Pg.962]    [Pg.966]    [Pg.128]    [Pg.11]    [Pg.243]    [Pg.79]    [Pg.191]    [Pg.433]   
See also in sourсe #XX -- [ Pg.419 ]




SEARCH



Aldehydes amination

Aldehydes reduction

Aldehydes reductive

Aldehydes reductive amination

Aminations aldehydes

Aminations reductive, sodium cyanoborohydride

Amines aldehydes

Amines cyanoborohydride

Reduction cyanoborohydride

Reductive aminations aldehydes

Sodium cyanoborohydride

Sodium cyanoborohydride aldehydes

Sodium cyanoborohydride reductive amination

Sodium cyanoborohydride, reduction

Sodium, reduction

© 2024 chempedia.info