Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diethylzinc, reactions with aldehydes

Organozinc reagents have been used in conjunction with a-bromovinylboranes in a tandem route to Z-trisubstituted allylic alcohols. After preparation of the vinylborane, reaction with diethylzinc effects migration of a boron substituent with inversion of configuration and exchange of zinc for boron.176 Addition of an aldehyde then gives the allylic alcohol. The reaction is applicable to formaldehyde alkyl and aryl aldehydes and to methyl, primary, and secondary boranes. [Pg.660]

Optically active dialkyl tartrates and (2i ,4/ )-pentane-2,4-diol were used as homochiral protecting groups in a, 6-unsaturated acetals 51 and 52 which were subjected to Simmons-Smith reaction with diethylzinc and diiodomethane to give cyclopropyl derivatives with a de of > 69% (Table 1). The acetal group was readily converted to the aldehyde by acidic hydrolysis or to the acid by ozonolysis. [Pg.276]

Nucleophilic addition of metal alkyls to carbonyl compounds in the presence of a chiral catalyst has been one of the most extensively explored reactions in asymmetric synthesis. Various chiral amino alcohols as well as diamines with C2 symmetry have been developed as excellent chiral ligands in the enantiose-lective catalytic alkylation of aldehydes with organozincs. Although dialkylzinc compounds are inert to ordinary carbonyl substrates, certain additives can be used to enhance their reactivity. Particularly noteworthy is the finding by Oguni and Omi103 that a small amount of (S)-leucinol catalyzes the reaction of diethylzinc to form (R)-l-phenyl-1 -propanol in 49% ee. This is a case where the... [Pg.107]

In a similar fashion to its reaction with the aldehydes, diethylzinc reacts with (N-diphenylphosphonyl)imines in the presence of chiral alkaloids to produce, after hydrolysis, chiral 2-substituted propylamines [42],... [Pg.528]

Radical cyclization of polyfunctional 5-hexenyl halides mediated by Et2Zn and catalyzed by nickel or palladium salts has been demonstrated to produce stereoselectively polyfunctional 5-membered carbo- and heterocycles [56, 57]. Based on this strategy a formal synthesis of methylenolactocin (11) was achieved (Scheme 20). The acetal 130, readily being built up by asymmetric alkylation of aldehyde 127 followed by reaction with butyl vinyl ether and NBS, served as the key intermediate for the construction of the lactone ring. Nickel(II)-catalyzed carbometallation was initiated with diethylzinc to yield exclusively the frans-disubstituted lactol 132, which could be oxidized directly by air to 134. Final oxidation under more forcing conditions then yielded the lactone (-)-75 as a known intermediate in the synthesis of (-)-methylenolactocin (11) [47aj. [Pg.61]

The chiral f5-dialkylamino alcohol DAIB serves as an efficient asymmetric catalyst for the addition of organozinc reagents to aldehydes. The reaction of diethylzinc with benzaldehyde in the presence of 2 mol % of (2S)-(-)-DAIB to give (S)-1-phenyl-1-propanol in 89% ee is described in the procedure which follows. DAIB exhibits the... [Pg.69]

N-Methylation of 3 and reduction of the crystalline oxazolidinone 4 with lithium aluminum hydride was found to give a superior yield of DAIB (5) and a more easily purified product than exhaustive methylation of 2 with methyl iodide and reduction of the quaternary methiodide with Super-Hydride. Recently, a modified version of DAIB, 3-exo-morpholinoisoborneol MIB), was prepared by Nugent that is crystalline and that is reported to give alcohols in high enantiomeric excess from the reaction of diethylzinc with aldehydes. ... [Pg.216]

When the palladiozincation was performed in the absence of an aldehyde substrate, two products could be isolated. The major product was the ethyl-substituted allene resulting from reaction of the putative allenylpalladium intermediate with diethylzinc (equation 22). Interestingly, this product is formed in only trace amounts when an aldehyde substrate is present. The second adduct is a dimeric allene, which can be envisioned as arising from coupling of the allenylzinc and allenylpalladium intermediates. [Pg.437]

Transition State Models. The stoichiometry of aldehyde, dialkylzinc, and the DAIB auxiliary strongly affects reactivity (Scheme 9) (3). Ethylation of benzaldehyde does not occur in toluene at 0°C without added amino alcohol however, addition of 100 mol % of DAIB to diethylzinc does not cause the reaction either. Only the presence of a small amount (a few percent) of the amino alcohol accelerates the organometallic reaction efficiently to give the alkylation product in high yield. Dialkyl-zincs, upon reaction with DAIB, eliminate alkanes to generate alkylzinc alkoxides, which are unable to alkylate aldehydes. Instead, the alkylzinc alkoxides act as excellent catalysts or, more correctly, catalyst dimers (as shown below) for reaction between dialkylzincs and aldehydes. The unique dependence of the reactivity on the stoichiometry indicates that two zinc atoms per aldehyde are responsible for the alkyl transfer reaction. [Pg.141]

In the (—)-DAIB-catalyzed reaction of diethylzinc and benzaldehyde, the rate is first-order in the amino alcohol. The initial alkylation rate is influenced by the concentration of diethylzinc and benzaldehyde but soon becomes unaffected by increased concentration. Thus, under the standard catalytic reaction conditions, the reaction shows saturation kinetics the rate is zeroth order with respect to both dialkylzinc reagent and aldehyde substrate. These data support the presence of the equilibrium of A-D, and alkyl transfer occurs intramolecularly from the dinuclear mixed-ligand complex D. This is the stereo-determining and also turnover-limiting step. [Pg.339]

New chiral Schiff base catalysts for the enantioselective addition of diethylzinc reagents to aldehydes have been developed.115,116 The reaction of aldehyde with diethylzinc in the presence of 1-2 mol% of the chiral Schiff base catalyst has provided the corresponding secondary alcohol with excellent enantiomeric excess (up to 96% ee). [Pg.297]

The most fully understood system in this class of reactions, however, is the DAIB-catalyzed addition of diethylzinc to aldehydes, due to the very detailed mechanistic studies performed by Noyori et al.32-37 They were able to determine the structure of several intermediates involved in the reaction and established the kinetic law. Part of the catalytic cycle is depicted in Scheme 13. The origin of the asymmetric amplification lies in the formation of dimers of DAIB-zinc alkoxides. The heterochiral dimer is quite stable in the concentration range of the experiment (2 x 10 1 to 5 x 10 1 M in toluene for DAIB), whereas the homodimers are prone to dissociation and react further with diethylzinc to give a di-zinc complex that is the active species in the catalytic cycle. They react with benzaldehyde and give rise to the asymmetric transfer of the ethyl group. The final product, as a zinc alkoxide, does not interfere with the reaction (and hence there is no autoinduction), since it... [Pg.274]

The research on asymmetric organozinc additions to carbonyl compounds started in 1984 when Oguni and Omi obtained 49% e.e. in the reaction of diethylzinc with benzaldehyde catalyzed by (X)-leucinol. Since then, a huge number of chiral (see Chiral) catalysts, mostly derived from amino alcohols, have been developed and the subject has been extensively reviewed. 63.264 jjjg highly enantioselective (see Electrophile) ligand (—)-3-exo-dimethylaminoisobomeol [(-)-DAIB] developed by Noyori and coworkers in 1986 is still used even if its application is mostly limited to aromatic and heteroaromatic aldehydes (equation 62). As shown by previous studies, chiral (see Chiral) ligands have a dual... [Pg.5235]

Asymmetric addition of diorganozincs to aldehydes catalyzed by chiral -amino alcohols provides a general method for the preparation of chiral secondary alcohols. Oguni, Noyori, and co-workers found that the aminoalcohol, (2S)-3-exo-(dimethylamino)isobornenol ((2S)-DAIB), acts as a particularly efficient promoter for this asymmetric reaction [9, 10]. Reaction of benzalde-hyde with diethylzinc in the presence of 2 mol% of (2S)-DAIB gives, after aqueous workup, (S)-l-phenylpropanol in high yield with 99% ee as shown in Scheme 8. Detailed mechanistic and theoretical studies of the (2S)-DAIB-pro-moted asymmetric addition have been reported [11]. [Pg.241]

The first report of a polymer-supported approach to this reaction appeared in 1987 [48]. Enantiopure amino alcohols such as ephedrine, prolinol, and 3-exo-amino-isoborneol were attached to Merrifield polymer. The use of polymer-supported 3-exo-aminoisoborneol 40 resulted in quite high enantioselectivity ( 95 % ee) in the ethylation of aldehydes with diethylzinc (Eq. 15), a result comparable with those obtained from the corresponding low-molecular-weight catalyst system (Eq. 16). A similar system was also reported in 1989, this time using ephedrine derivatives (41,42) and prolinol derivative (43) [49]. A methylene spacer was introduced between the polymer and the amino alcohol to improve activity [50]. Despite this the selectivity was always somewhat lower than that obtained from the low-molecular-weight catalyst (44). These chiral polymers were all prepared by the chemical modification method using Merrifield polymer. [Pg.958]


See other pages where Diethylzinc, reactions with aldehydes is mentioned: [Pg.567]    [Pg.438]    [Pg.292]    [Pg.164]    [Pg.183]    [Pg.115]    [Pg.213]    [Pg.72]    [Pg.79]    [Pg.816]    [Pg.430]    [Pg.142]    [Pg.142]    [Pg.148]    [Pg.338]    [Pg.507]    [Pg.313]    [Pg.489]    [Pg.334]    [Pg.210]    [Pg.244]    [Pg.396]    [Pg.498]    [Pg.960]    [Pg.962]    [Pg.165]    [Pg.166]    [Pg.72]    [Pg.1320]   
See also in sourсe #XX -- [ Pg.1211 ]




SEARCH



Aromatic aldehydes chiral reaction with diethylzinc

Diethylzinc

Diethylzinc reactions

Diethylzinc, reactions with

Diethylzinc-aldehyde

© 2024 chempedia.info