Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes oxazole

Photolysis in general produced oxazoles and a variety of other products including aminochalcones, nitriles, aldehydes and chalcone oximes. A number of photolytic intermediates have been postulated, represented by (151), (152), (153) and (154) (77CL1195, 75T1373, 73HCA2588, 73TL2283). [Pg.37]

Oxazole synthesis tram aldehydes and a-hydroxyamides or cyanohydnns. [Pg.122]

The aldehyde functionality present in 3-phenyl-2H-azirine-2-carbox-aldehyde reacts selectively with amines and with Qrignard and Wittig reagents to give a variety of substituted azirines. These azirines have been used, in turn, to prepare a wide assortment of heterocyclic rings such as oxazoles, imidazoles, pyrazoles, pyrroles, and benzazepins. ... [Pg.87]

The Fisher oxazole synthesis involves condensation of equimolar amounts of aldehyde cyanohydrins (1) and aromatic aldehydes in dry ether in the presence of dry hydrochloric acid. ... [Pg.234]

In 1896, Emil Fisher found that 2,5-diphenyloxazole hydrochloride was precipitated by passing gaseous hydrogen chloride into an absolute ether solution of benzaldehyde and benzaldehyde cyanohydrin. The oxazole hydrochloride can be converted to the free base by addition of water or by boiling with alcohol. Many different aromatic aldehydes and cyanohydrin combinations have been converted to 2,5-diaryloxazoles 4 by this procedure in 80% yield. ... [Pg.234]

In 1949, Comforth showed that preparation of 2,5-disubstituted oxazoles was not limited to diaryloxazoles through condensation of aldehydes (benzaldehyde, n-hept-aldehyde) with a-hydroxy-amides (lactamide). The intermediate oxazolidone 13 were converted into oxazoles 14 on warming with phosphoryl chloride. ... [Pg.235]

The van Leusen reaction forms 5-substituted oxazoles through the reaction of p-tolylsulfonylmethyl isocyanide (1, TosMIC) with aldehydes in protic solvents at refluxing temperatures. Thus 5-phenyloxazole (2) is prepared in 91% yield by reacting equimolar quantities of TosMIC and benzaldehyde with potassium carbonate in refluxing methanol for 2 hrs. ... [Pg.254]

The development of the key intermediate, 5-(2-methoxy-4-nitrophenyl)oxazole (25), in the preparation of the hepatitis C drug candidate, VX-497, utilizes a van Leusen reaction of aldehyde 24 with TosMIC. ... [Pg.258]

Workers at Lilly prepared the oxazole-containing partial ergot alkaloid, 27, a 5-HTl A agonist, through van Leusen reaction of aldehyde 26. ... [Pg.258]

The gold complex, generated in situ from bis(4-isocyanocyclohexyl)gold(I) tetrafluoroborate and (A)-A-methyl-,V-[2-(dialkylamino)ethyl]-l-[(5)-r,2-bis(diphenylphosphino)ferrocenyl]eth-ylamine, is an effective catalyst for the aldol reaction of various aldehydes with methyl iso-cyanoacetate to give the trans- and cw-4,5-dihydro-l,3-oxazoles. Depending on the aldehyde, the transjeis product ratio ranges from 84 16 to 100 0, and the ee of the main diastereomer is between 72 and 97%26. [Pg.583]

Metalation of 4,5-dihydro-2-[(7 )-sulfinylmethyl]oxazoles (e.g., 2) with butyllithium at -90 C and reaction of the chiral azaenolates with aldehydes furnishes the hydroxyalkylated sulfinylox-azole derivatives 3 which are desulfurized to give the 4,5-dihydro-2-(2-hydroxyalkyl)oxazoles 4. The corresponding 3-hydroxy acids 5 are obtained by acidic hydrolysis in 60-85% overall yield and 26-53% ee31. [Pg.608]

The anions of 2-(arylsulfinylmethyl)oxazoles can be added to aldehydes to give 2-(l-aryl-sulfinyl-2-hydroxyalkyl)oxazoles which have been transformed into /1-hydroxy acids. With lithium bases, the enantioseleetivity could be increased to 50%. The use of a more chelating counter ion, such as magnesium, lowered the optical yields44. [Pg.661]

When aniline derivatives 9-87 bearing an alkyne moiety were used as the reaction input together with an aldehyde and 9-80, furo[2,3-c]quinolines 9-88 were obtained (Scheme 9.18) [58]. Here, an intermediate oxazole is also assumed to occur, enter-... [Pg.554]

Os(II) complexes of tosylmethylisocyanide react with aldehydes and ketones in the presence of sodium methoxide, producing cyclic carbene complexes (66). Compound 32 undergoes a rapid reaction with benzal-dehyde and NaOMe, yielding the oxazol-2-ylidene complex 33 and eliminating p-toluene sulfinic acid (66) ... [Pg.139]

Strecker aldehyde are generated by rearrangement, decarboxylation and hydrolysis. Thus the Strecker degradation is the oxidative de-amination and de-carboxylation of an a-amino acid in the presence of a dicarbonyl compound. An aldehyde with one fewer carbon atoms than the original amino acid is produced. The other class of product is an a-aminoketone. These are important as they are intermediates in the formation of heterocyclic compounds such as pyrazines, oxazoles and thiazoles, which are important in flavours. [Pg.17]

An intermolecular version of a [4+2] cycloaddition-retrofragmentation of alkyne-oxazoles can be adapted to the synthesis of 2,3,4-trisubstituted furan in high regioselectivity if acetylenic aldehydes are used as starting materials. The product of this reaction is a pivotal intermediate for the synthesis of (-)-teubrevin G <00JA9324>. [Pg.142]

Monosubstituted and 4,5-disubstituted oxazoles were easily obtained from aryl-substituted tosylmethyl isocyanides and aldehydes . Tosyloxazoles 107, prepared from TosMIC 106 and carboxylic acid chlorides, led to 5-substituted derivatives 108 through ultrasound-promoted desulfonylation <00JCS(P1)527>. [Pg.224]

Proline has been often used in reactions with aldehydes to form 1-oxo perhydropyrrolo[l,2-f]oxazole structures <1998J(P1)3777, 2004PNA5839>. These compounds were used for the asymmetric synthesis of proline derivatives which are present in natural products or analogs (Scheme 49) <2005T10018, 2005TA2075, 2006JOC97>. [Pg.89]

Substituted oxazoles through the reaction of p-tolylsulfonylmethyl isocyanide (TosMIC) with aldehydes in protic solvents at refluxing temperatures. [Pg.601]

For arylsulfonyl methyl isocyanides (3), [3 + 2] cycloadditions with aldehydes yielding 4,5-disubstituted oxazoles (N) have been reported [115]. The cycloaddition takes place in the same manner as with the use of isocyano esters (A, = H) ... [Pg.136]

Also in 2009, an elegant combination of two original van Leusen reactions was reported, leading to a MCR toward 4,5-disubstituted oxazoles (19) [136]. The MCR involves the base-induced mono-alkylation of TosMIC (8a) followed by the formal cycloaddition with an aldehyde (Fig. 9). Although dialkylation is a problem often... [Pg.139]

Fig. 9 MCR between TosMIC (8a), aliphatic halides (18), and aldehydes which yields 4,5-disubstituted oxazoles (19)... Fig. 9 MCR between TosMIC (8a), aliphatic halides (18), and aldehydes which yields 4,5-disubstituted oxazoles (19)...
In 2007, Tron and Zhu reported the multicomponent synthesis of 5-iminoox-azolines (42) starting from a,a-disubstituted secondary isocyano amides (41), amines, and carbonyl components (see Fig. 15) [155]. The reaction presumably follows a similar mechanism as in the 2,4,5-trisubstituted oxazole MCR (described in Fig. 11) however, because of the absence of a-protons at the isocyano amide 41, the nonaromatized product is obtained. As in the 2,4,5-trisubstituted oxazole MCR, toluene was found to be the optimal solvent in combination with a weak Brpnsted acid. The reaction was studied for a range of aldehydes and secondary amines. In addition, a variety of functionalities such as acetate, free hydroxyl group, carbamate, and esters are tolerated. Clean conversions were observed for this MCR as indicated by NMR analysis of the crude products (isolated yield 50-68%). The... [Pg.144]

The structural diversity (and complexity) of the products obtained by the MCR between tertiary isocyano amides, aldehydes, and amines could be increased to various heterocyclic scaffolds by combining the initial 2,4,5-tiisubstituted oxazole MCR with in situ intramolecular tandem processes (Fig. 17). Most tandem processes reported are based on the reactivity of the oxazole ring toward C=C or C=C bonds in hetero Diels-Alder reactions followed by ring opening reactions generating the rather complex heterocyclic products with high degrees of variation. [Pg.145]


See other pages where Aldehydes oxazole is mentioned: [Pg.8]    [Pg.88]    [Pg.625]    [Pg.251]    [Pg.257]    [Pg.257]    [Pg.608]    [Pg.1031]    [Pg.11]    [Pg.12]    [Pg.12]    [Pg.552]    [Pg.159]    [Pg.64]    [Pg.107]    [Pg.251]    [Pg.81]    [Pg.139]    [Pg.147]    [Pg.157]    [Pg.22]    [Pg.55]    [Pg.140]    [Pg.141]    [Pg.142]   
See also in sourсe #XX -- [ Pg.450 ]




SEARCH



Aldehydes 5- aryl oxazoles

Aldehydes 5-substituted oxazoles

Aldehydes Fischer oxazole synthesis

Aldehydes lithiated oxazoles

Aldehydes trimethylsilyl)oxazoles

Oxazole ring aldehydes

© 2024 chempedia.info