Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes boiling points

Furfural," Alpha furfur-aldehyde boiling point lh0 C (741) mm)... [Pg.693]

Cinnamic aldehyde (boiling point 253°C with decomposition, melting point -7.5°C, density 1.0497) has a cinnamon odor, hence the name. As it oxidizes in air to cinnamic acid, it should be protected from oxidation. [Pg.171]

Aromatic aldehydes usually have relatively high boiling points, but distil with little or no decomposition. The vapours burn with a smoky flame. They are easily oxidised on standing in the air into the corresponding acids the odours are often pleasant and characteristic. Aromatic aldehydes, by virtue of their high molecular weight, yield... [Pg.720]

Aromatic alcohols are insoluble in water and usually burn with a smoky flame. Their boiling points are comparatively high some are solids at the ordinary temperature. Many may be oxidised by cautious addi-tion of dilute nitric acid to the corresponding aldehyde upon neutralis-tion of the excess of acid, the aldehyde may be isolated by ether extraction or steam distillation, and then identified as detailed under Aromatic Aldehydes, Section IV,135. [Pg.817]

This preparation illustrates the method to be adopted for aldehydes of boiling point below about 150°. [Pg.883]

The polyhydric alcohols of Solubility Group II are liquids of relatively high boiling point and may be detected inter alia by the reactions already described for Alcohols (see 6). Compounds containing two hydroxyl groups attached to adjacent carbon atoms (1 2-glyeols), a-hydroxy aldehydes and ketones, and 1 2-diketones may be identified by the periodic acid test, given in reaction 9. [Pg.1069]

Physical constants such as melting point boiling point and solubility in water are collected for a variety of aldehydes and ketones in Appendix 1... [Pg.708]

In general aldehydes and ketones have higher boiling points than alkenes because they are more polar and the dipole-dipole attractive forces between molecules are stronger But they have lower boiling points than alcohols because unlike alcohols two carbonyl groups can t form hydrogen bonds to each other... [Pg.708]

Aldehydes and ketones have higher boiling points than hydrocarbons but have lower boiling points than alcohols... [Pg.742]

Hydrogen bonding m carboxylic acids raises their melting points and boiling points above those of comparably constituted alkanes alcohols aldehydes and ketones... [Pg.821]

High purity acetaldehyde is desirable for oxidation. The aldehyde is diluted with solvent to moderate oxidation and to permit safer operation. In the hquid take-off process, acetaldehyde is maintained at 30—40 wt % and when a vapor product is taken, no more than 6 wt % aldehyde is in the reactor solvent. A considerable recycle stream is returned to the oxidation reactor to increase selectivity. Recycle air, chiefly nitrogen, is added to the air introducted to the reactor at 4000—4500 times the reactor volume per hour. The customary catalyst is a mixture of three parts copper acetate to one part cobalt acetate by weight. Either salt alone is less effective than the mixture. Copper acetate may be as high as 2 wt % in the reaction solvent, but cobalt acetate ought not rise above 0.5 wt %. The reaction is carried out at 45—60°C under 100—300 kPa (15—44 psi). The reaction solvent is far above the boiling point of acetaldehyde, but the reaction is so fast that Httle escapes unoxidized. This temperature helps oxygen absorption, reduces acetaldehyde losses, and inhibits anhydride hydrolysis. [Pg.76]

Aldehyde CAS Registry Number Molecular formula Molecular weight Melting point, °C Boiling point, °C Solubiity, g/lOOg water... [Pg.470]

The location of the hydroxyl and aldehyde groups ortho to one another in saUcylaldehyde permits intramolecular hydrogen bonding, and this results in the lower melting point and boiling point and the higher acid dissociation constant observed relative to -hydroxybenzaldehyde. [Pg.505]

Formaldehyde is a gas with a boiling point of -21 °C. It is usually supplied as a stabilised aqueous solution ( 40% formaldehyde) known as formalin. When formalin is used as the source of the aldehyde, impurities present generally include water, methanol, formic acid, methylal, methyl formate and carbon dioxide. The first three of these impurities interfere with polymerisation reactions and need to be removed as much as possible. In commercial polymerisation the low polymers trioxane and paraformaldehyde are convenient sources of formaldehyde since they can be obtained in a greater state of purity. [Pg.532]

Aldehydes and Ketones — These share many chemical properties because they possess the carbonyl (C=0) group as a common feature of their structure. Aldehydes and ketones have lower boiling points and higher vapor pressures than their alcohol counterparts. Aldehydes and ketones through C< are soluble in water and have pronounced odors. Ketones are relatively inert while aldehydes are easily oxidized to their counterpart organic acids. [Pg.170]

When catalyzed by acids, low molecular weight aldehydes add to each other to give cyclic acetals, the most common product being the trimer. The cyclic trimer of formaldehyde is called trioxane, and that of acetaldehyde is known as paraldehyde. Under certain conditions, it is possible to get tetramers or dimers. Aldehydes can also polymerize to linear polymers, but here a small amount of water is required to form hemiacetal groups at the ends of the chains. The linear polymer formed from formaldehyde is called paraformaldehyde. Since trimers and polymers of aldehydes are acetals, they are stable to bases but can be hydrolyzed by acids. Because formaldehyde and acetaldehyde have low boiling points, it is often convenient to use them in the form of their trimers or polymers. [Pg.1245]

The headspace volatiles from biological fluids are comprised of a chemically diverse group of substances of widely different polarity most are alcohols, ketones, aldehydes, O- and M-hetrocyclic cosqpounds, isocyanates, sulfides, and hydrocarbons containing from 1 to 12 carbon atoms and with boiling points generally less than 300 C [342]. Quantitative differences in... [Pg.419]

The same reaction can be applied, not only to the aromatic parent substances, the hydrocarbons, but also to all their derivatives, such as phenols, amines, aldehydes, acids, and so on. The nitration does not, however, always proceed with the same ease, and therefore the most favourable experimental conditions must be determined for each substance. If a substance is very easily nitrated it may be done with nitric acid sufficiently diluted with water, or else the substance to be nitrated is dissolved in a resistant solvent and is then treated with nitric acid. Glacial acetic acid is frequently used as the solvent. Substances which are less easily nitrated are dissolved in concentrated or fuming nitric acid. If the nitration proceeds with difficulty the elimination of water is facilitated by the addition of concentrated sulphuric acid to ordinary or fuming nitric acid. When nitration is carried out in sulphuric acid solution, potassium or sodium nitrate is sometimes used instead of nitric acid. The methods of nitration described may be still further modified in two ways 1, the temperature or, 2, the amount of nitric acid used, may be varied. Thus nitration can be carried out at the temperature of a freezing mixture, at that of ice, at that of cold water, at a gentle heat, or, finally, at the boiling point. Moreover, we can either employ an excess of nitric acid or the theoretical amount. Small scale preliminary experiments will indicate which of these numerous modifications may be expected to yield the best results. Since nitro-compounds are usually insoluble or sparingly soluble in water they can be precipitated from the nitration mixture by dilution with water. [Pg.163]

The distillate from the steam distillation is twice shaken with not too much ether, and the ethereal extract, if necessary after concentration, is transferred to a wide-mouthed bottle, into which technical sodium bisulphite solution is poured in small portions with stirring (a glass rod is used) so that the aldehyde addition compound formed sets to a thick paste. The bottle is then stoppered and vigorously shaken the stopper is removed from time to time until all the benzaldehyde has entered into combination. (Odour ) The paste is now filtered with suction, and the solid on the funnel, after washing with ether, is at once decomposed by mixing it with an excess of sodium carbonate solution the liberated aldehyde is removed without delay by steam distillation. The distillate is extracted with ether, the extract is dried over a little calcium chloride, the ether is removed by distillation, and the benzaldehyde which remains is likewise distilled. Boiling point 179°. Yield 35-40 g. (70 per cent of the theoretical). [Pg.210]

The lowest members of the series of the aldehydes are colourless liquids of pungent odour and miscible with water the middle members are also liquids, but do not dissolve easily in water the aldehydes of high molecular weight are crystalline solids. The boiling points of the aldehydes are considerably lower than those of the corresponding alcohols ... [Pg.210]

The cooled reaction product is treated with 200 cc. of water, the layer of oil separated, washed once with a second portion of water, and subjected to distillation in vacuo. The first fraction of the distillate contains benzyl alcohol together with unchanged aldehyde, as well as a small quantity of water. The temperature then rises rapidly to the boiling-point of benzyl benzoate, when the receivers are changed. The product boils at 184-185°/15 mm., and analysis by saponification shows it to consist of 99 per cent ester. A yield of 410-420 g. is obtained, which corresponds to 90-93 per cent of the theoretical amount. This benzyl benzoate supercools readily, but after solidifying... [Pg.58]

Table 1.10 compares the boiling points of an alkane, an alcohol, and an aldehyde with the same number of carbon atoms. You can see that the boiling point of an alcohol is much greater than the boiling point of an alkane or an aldehyde. [Pg.37]


See other pages where Aldehydes boiling points is mentioned: [Pg.327]    [Pg.702]    [Pg.469]    [Pg.113]    [Pg.212]    [Pg.151]    [Pg.211]    [Pg.774]    [Pg.1284]    [Pg.327]    [Pg.702]    [Pg.379]    [Pg.31]    [Pg.240]    [Pg.167]    [Pg.10]    [Pg.34]    [Pg.50]    [Pg.37]    [Pg.25]    [Pg.55]   
See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.780 ]

See also in sourсe #XX -- [ Pg.235 ]

See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.780 ]




SEARCH



Boiling point aldehydes and ketones

Boiling point of aldehydes

Boiling point of aldehydes and ketones

© 2024 chempedia.info