Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes, aromatic oxidation

This ladical-geneiating reaction has been used in synthetic apphcations, eg, aioyloxylation of olefins and aromatics, oxidation of alcohols to aldehydes, etc (52,187). Only alkyl radicals, R-, are produced from aliphatic diacyl peroxides, since decarboxylation occurs during or very shortiy after oxygen—oxygen bond scission in the transition state (187,188,199). For example, diacetyl peroxide is well known as a source of methyl radicals (206). [Pg.124]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

C ( propyl) N phenylmtrone to N phenylmaleimide, 46, 96 semicarbazide hydrochloride to ami noacetone hydiochlonde, 46,1 tetraphenylcyclopentadienone to diphenyl acetylene, 46, 44 Alcohols, synthesis of equatorial, 47, 19 Aldehydes, aromatic, synthesis of, 47, 1 /3-chloro a,0 unsaturated, from ke tones and dimethylformamide-phosphorus oxy chloride, 46, 20 from alky 1 halides, 47, 97 from oxidation of alcohols with dimethyl sulfoxide, dicyclohexyl carbodumide, and pyndimum tnfluoroacetate, 47, 27 Alkylation, of 2 carbomethoxycyclo pentanone with benzyl chloride 45,7... [Pg.120]

Reactions of partial electrochemical oxidation are of considerable interest in the electrosynthesis of various organic compounds. Thus, at gold electrodes in acidic solutions, olefins can be oxidized to aldehydes, acids, oxides, and other compounds. A good deal of work was invested in the oxidation of aromatic compounds (benzene, anthracene, etc.) to the corresponding quinones. To this end, various mediating redox systems (e.g., the Ce /Ce system) are employed (see Section 13.6). [Pg.283]

On the other hand, the oxidation of the alkyl substituent in alkyl aromatic compounds can be carried out by various methods efficiently. For example, CAN has been used to oxidize substituted toluene to aryl aldehydes. Selective oxidation at one methyl group can be achieved (Eq. 7.19).44 The reaction is usually carried out in aqueous acetic acid. [Pg.209]

A total synthesis of O-methylarnottianamide (223) was performed by Falck et al. (177) (Scheme 34). The regio- and stereospecific cycloaddition of the 2,4-dinitrophenyl (DNP) salt of 6,7-methylenedioxyisoquinoline (218) with a-methoxystyrene 219 resulted in 220. Compound 220 was hydrolyzed, then aromatized, and the resultant aldehyde was oxidized to carboxylic acid 221. Curtius rearrangement of the appropriate azide yielded urethane 222, which... [Pg.295]

ALDEHYDES FROM PRIMARY ALCOHOLS BY OXIDATION WITH CHROMIUM TRIOXIDE 1-HEPTANAL, 52, 5 ALDEHYDES FROM sym-TRITHIANE n-PENTADECANAL, 51, 39 Aldehydes, acetylenic, 54, 45 Aldehydes, aromatic, 54, 45 Aldehydes, benzyl, 54, 45 Aldehydes, olefinic, 54, 45... [Pg.54]

Qualitative spot tests for aldehydes, in the presence of ketones, are generally only reliable for water-soluble compounds. This problem can be overcome by the use of 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald , Aldrich Chemical Company) in the presence of Aliquat (Scheme 5.27). Under aerial oxidation, the initially formed colourless cyclic adduct changes colour through red to purple. The colourless cyclic aminal can also be formed by ketones, but only the adducts derived from the aldehydes are oxidized to the purple bicyclic aromatic system [28]. Weakly electrophilic aldehydes, e.g., 4-methoxybenzaldehyde, reacts slowly, but will give the positive coloration upon gentle heating to ca. 70°C for one or two minutes. [Pg.223]

PMMAs are attacked by strong acids, strong and concentrated bases, esters, ethers, ketones, aldehydes, aromatic and halogenated hydrocarbons, certain alcohols, oxidizing agents, and phenols. [Pg.431]

Several 2-thiazolyl- (194) and 2-benzothiazolyl- (197) hydrazones of aromatic aldehydes undergo oxidative intramolecular cyclization to form 1,2,4-triazolo-bridgehead heterocycles 195 (95SC3363) (Scheme 53) and 198 [93JCR(S)244] (Scheme 54), respectively. In the case of 194, l-acetoxy,l-(4-aryl-2-thiazolyl)-2-aroylhydrazines (196) are formed as minor products (Scheme 53). [Pg.46]

To avoid overoxidation, primary amines (e.g. 128, equation 89) can be converted into Schiff bases with an aromatic aldehyde. Subsequent oxidation of the resultant imines 129 with an excess of peracids produces oxaziridines 130 and/or nitrones 131. Both of them produce hydroxylamines 132 (equation 89) upon hydrolysis in moderate to good overall yields. Yields of hydroxylamines are considerably better if anisaldehyde instead of benzaldehyde is used for the protection . ... [Pg.146]

By adjusting catalyst concentration from the higher value of Hay and Blanchard to that used in this study, we can direct the oxidation of aromatic hydrocarbons to increase the yields of alcohols and aldehydes. The oxidation period for optimum conversion can readily be determined by low voltage mass spectrometry. [Pg.413]

This radical-generating reaction has been used in synthetic applications, e.g.. aroyloxylation of olefins and aromatics, oxidation of alcohols to aldehydes, etc. [Pg.1237]

The hydroformylation reaction of vinyl aromatics (Table 4)60 lends itself to the synthesis of a number of 2-arylpropionic acids in high enantiomeric excess that are nonsteroidal antiinflammatory agents.61 Previous asymmetric syntheses of these acids required the use of stoichiometric amounts of chiral auxiliaries, which in most cases are not easily recovered. The branched aldehyde was oxidized to (S)-(+)-na-proxen,62 in 84% yield. [Pg.932]

Conjugated—a,/)-unsaturated or aromatic—aldehydes are oxidized by manganese dioxide in the presence of one equivalent of sodium cyanide to give an acyl cyanide (Formula C in Figure 17.18) via an intermediate cyanohydrin (B in Figure 17.18), which is also either an allylic or a benzylic alcohol. Alcohols of this kind can be oxidized by a relatively weak oxi-... [Pg.757]

For example, oxidation of acenaphthene by red lead in acetic acid gives 7-acenaphthenol acetate, from which 7-acenaphthenol is obtained by saponification with methanolic sodium hydroxide. Phenols may be prepared indirectly from aromatic aldehydes by oxidation with peracetic acid followed by hydrolysis of the resulting aryl formate. "... [Pg.536]

Esters. Aromatic aldehydes undergo oxidation on reaction with /t-nitroaniline, DBU, and 1,3-dimethylbenzimidazolium iodide in an alcohol. Apparently the benzimidazolium ylide is involved. [Pg.149]

Aromatic aldehydes are oxidized by Tollens reagent, but not by Fehling s reagent. This property is used to distinguish between aliphatic and aromatic aldehydes. [Pg.71]

A second approach to isolating redox metal ions in stable inorganic matrices, thereby creating oxidation catalysts with interesting activities and selectivities, is to incorporate them in a zeolite lattice framework. The first example of such a redox zeolite was the synthetic titanium(IV) zeolite, titanium siliealite (TS-1), developed by Enichem [30-32]. TS-1 was shown to catalyze a variety of synthetically useful oxidations with 30% H202, such as olefin epoxidation, oxidation of primary alcohols to aldehydes, aromatic hydroxylation, and ammoxi-mation of cyclohexanone to cyclohexanone oxime (see Fig. 9). [Pg.37]

This method is well suited to the formation of symmetrical pyrazines, " but if both diketone and diamine are unsymmetrical, two isomeric pyrazines are formed. The dihydro-pyrazines can be dehydrogenated and they will also react with aldehydes and ketones, with introduction of another alkyl group at the same time as achieving the aromatic oxidation level. ... [Pg.280]


See other pages where Aldehydes, aromatic oxidation is mentioned: [Pg.505]    [Pg.311]    [Pg.65]    [Pg.359]    [Pg.368]    [Pg.118]    [Pg.49]    [Pg.392]    [Pg.505]    [Pg.119]    [Pg.349]    [Pg.757]    [Pg.83]    [Pg.53]    [Pg.349]    [Pg.636]    [Pg.252]    [Pg.135]    [Pg.676]    [Pg.334]   
See also in sourсe #XX -- [ Pg.1528 ]




SEARCH



Aldehydes oxidation

Aromatic aldehydes

Aromatic oxidation

Aromatics Aldehydes

Aromatics oxidation

Aromatization, oxidative

© 2024 chempedia.info