Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes, addition derivatives preparation

The experimental procedure to be followed depends upon the products of hydrolysis. If the alcohol and aldehyde are both soluble in water, the reaction product is divided into two parts. One portion is used for the characterisation of the aldehyde by the preparation of a suitable derivative e.g., the 2 4-dinitrophenylhydrazone, semicarbazone or di-medone compound—see Sections 111,70 and 111,74). The other portion is employed for the preparation of a 3 5-dinitrobenzoate, etc. (see Section 111,27) it is advisable first to concentrate the alcohol by dis tillation or to attempt to salt out the alcohol by the addition of solid potassium carbonate. If one of the hydrolysis products is insoluble in the reaction mixture, it is separated and characterised. If both the aldehyde and the alcohol are insoluble, they are removed from the aqueous layer separation is generally most simply effected with sodium bisulphite solution (compare Section Ill,74),but fractional distillation may sometimes be employed. [Pg.328]

We have shown that the direct arylation of acrolein toward the synthesis of cinnamaldehyde derivatives was an efficient procedure. Using the palladacycle 1 as catalyst, substituted aldehydes 3 were prepared with up to 87% isolated yield from condensed aiyl bromides (Scheme 21.1, Route 1) that was extended successfully to heteroaiyl bromides, like bromoquinolines (6). Alternatively, the acrolein diethyl acetal was used as olefin and a selective formation of the saturated ester 4 was attained under the same reaction conditions (Scheme 21.1, Route 2). The expected aldehydes 3 were, however, obtained from most of the aiyl halides used under modified conditions. It was shown that the addition of n-Bu4NOAc in the medium... [Pg.186]

Porphyrazines (pz), or tetraazaporphyrins, are compounds that can be viewed as porphyrin variants in which the meso carbon atoms are replaced with nitrogen atoms, as Fig. 1 shows (1). This difference intrinsically gives porphyrazines discrete physiochemical properties from the porphyrins. In addition, despite their similar molecular architecture, porphyrazines are prepared by an entirely different synthetic route than porphyrins—by template cyclization of maleonitrile derivatives, as in Fig. 2, where the open circle with the A in it represents the peripheral substituent of the pz—rather than by the condensation of pyrrole and aldehyde derivatives (1). The pz synthetic route allows for the preparation of macrocycles with chemical and physical properties not readily accessible to porphyrins. In particular, procedures have been developed for the synthesis of porphyrazines with S, N, or O heteroatom peripheral functionalization of the macrocycle core (2-11). It is difficult to impossible to attach the equivalent heteroatoms to the periphery of porphyrins (12). In addition, the preparation and purification of porphyrazines that bear two different kinds of substituents is readily achievable through the directed cocyclization of two different dinitriles, Fig. 3 (4, 5, 13). [Pg.475]

Analogous to the use of chiral acetals one can employ chiral N,O-acetals, accessible from a, -unsatu-rated aldehydes and certain chiral amino alcohols, to prepare optically active -substituted aldehydes via subsequent Sn2 addition and hydrolysis. However, the situation is more complicated in this case, since the N,0-acetal center constitutes a new stereogenic center which has to be selectively established. The addition of organocopper compounds to a, -ethylenic oxazolidine derivatives prepared from unsaturated aldehydes and ephedrine was studied.70-78 The (diastereo) selectivities were rather low (<50% ee after hydrolysis) in most cases, the highest value being 80% ee in a single case.73 There is a strong solvent effect in these reactions, e.g. in the addition of lithium dimethylcuprate to the ( )-cinnamaldehyde-derived oxazolidine (70 Scheme 28) 73 the (fl)-aldehyde (71) is formed preferentially in polar solvents, while the (S)-enantiomer [ent-71) is the major product in nonpolar solvents like hexane. This approach was utilized in the preparation of citronellal (80% ee) from crotonaldehyde (40% overall yield).78... [Pg.210]

In 1997, Kobayashi and colleagues reported the first truly catalytic enantioselective Mannich-type reactions of aldimines 24 with silyl enolates 37 using a novel chiral zirconium catalyst 38 prepared from zirconium (IV) fert-butoxide, 2 equivalents of (R)-6,6 -dibromo-l,l -bi-2-naphthol, and N-methylimidazole (Scheme 13) [27, 28], In addition to imines derived from aromatic aldehydes, those derived from heterocyclic aldehydes also worked well in this reaction, and good to high yields and enantiomeric excess were obtained. The hydroxy group of the 2-hydroxyphenylimine moiety, which coordinates to the zirconium as a bidentate ligand, is essential to obtain high selectivity in this method. [Pg.114]

Although the transfer of oxygen from an oxo-transition metal to an organic substrate is well known (Scheme 33), the reverse transformation is less common. Lower-valent tungsten halide derivatives, prepared by addition of lithium alkyls to tungsten hexachloride, can transform dialkoxides into olefins (Scheme 33 and bring about reductive coupling of aldehyde... [Pg.114]

Cycloadditions of TMM to aldehydes allow the preparation of methylene tetrahydrofurans. The challenge was to overcome the poor nucleophilicity of the intermediate alkoxide, resulting from the Pd-TMM nucleophilic addition to the aldehyde. The latter must attack intramolecularly the r-allyl moiety to generate the cycloadduct and liberate the palladium catalyst for the next cycle. The solution is to add trialkyltin acetates (Me3SnOAc or BusSnOAc) to the reaction mixture. This leads to the formation of stannyl ethers that react readily with 7r-allylpalladium cation intermediates. MesSnOAc gives better results than other tin derivatives and only 5-10 mol % is necessary (eq 27). [Pg.4]

The silyloxy aldehyde 1 was prepared from the ester 9 by reduction with Dibal. Felkin-controlled 1,2-addition of the allyl stannane 2 established the relative configuration of the secondary alcohol of 3, that was then used to control the relative configuration of the new alcohol in 10. Addition of the crotyl horane 12 to the derived aldehyde 11 also proceeded with high diastereocontrol. [Pg.198]

Other modifications of the polyamines include limited addition of alkylene oxide to yield the corresponding hydroxyalkyl derivatives (225) and cyanoethylation of DETA or TETA, usuaHy by reaction with acrylonitrile [107-13-1/, to give derivatives providing longer pot Hfe and better wetting of glass (226). Also included are ketimines, made by the reaction of EDA with acetone for example. These derivatives can also be hydrogenated, as in the case of the equimolar adducts of DETA and methyl isobutyl ketone [108-10-1] or methyl isoamyl ketone [110-12-3] (221 or used as is to provide moisture cure performance. Mannich bases prepared from a phenol, formaldehyde and a polyamine are also used, such as the hardener prepared from cresol, DETA, and formaldehyde (228). Other modifications of polyamines for use as epoxy hardeners include reaction with aldehydes (229), epoxidized fatty nitriles (230), aromatic monoisocyanates (231), or propylene sulfide [1072-43-1] (232). [Pg.47]


See other pages where Aldehydes, addition derivatives preparation is mentioned: [Pg.89]    [Pg.43]    [Pg.523]    [Pg.557]    [Pg.32]    [Pg.652]    [Pg.652]    [Pg.48]    [Pg.117]    [Pg.238]    [Pg.117]    [Pg.242]    [Pg.33]    [Pg.490]    [Pg.717]    [Pg.189]    [Pg.652]    [Pg.276]    [Pg.520]    [Pg.134]    [Pg.397]    [Pg.320]    [Pg.244]    [Pg.456]    [Pg.318]    [Pg.73]    [Pg.57]    [Pg.687]    [Pg.212]    [Pg.35]    [Pg.96]    [Pg.102]    [Pg.199]    [Pg.218]   
See also in sourсe #XX -- [ Pg.183 , Pg.184 , Pg.185 ]




SEARCH



Addition aldehydes

Addition derivatives

Aldehydes deriv

Aldehydes derivatives

Aldehydes preparation

Derivatives, preparation

© 2024 chempedia.info