Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols allene synthesis

Homopropargylic alcohols ot-allenic alcohols. The synthesis of alkylallenes (5, 397) by the reaction of trialkylboranes and lithium chioropropargylide, ClCH2C=CLi (1), has been extended to these two systems. Thus addition of acrolein to the organoborane a can lead to either 2 or 3, depending on the temperature at which a is kept before reaction with the aldehyde (equation I). If the aldehyde is... [Pg.446]

Preparation. Johnson and co-workers give a procedure for the preparation of a solution of potassium r-butoxide in r-butanol under nitrogen. Skattebpl and Solomon describe preparation of the solution by the same method and for evaporating it to solvent-free solid (for a summary, see Methyllithium, allene synthesis). The reagent can be prepared also from potassium purified with /-amyl alcohol see Potassium, Pearson s procedure). [Pg.1189]

Synthesis of allenic alcohols hy 1., 2-substitution of chlorine on ether groups by hydride... [Pg.155]

As with i -substituted allyl alcohols, 2,i -substituted allyl alcohols are epoxidized in excellent enantioselectivity. Examples of AE reactions of this class of substrate are shown below. Epoxide 23 was utilized to prepare chiral allene oxides, which were ring opened with TBAF to provide chiral a-fluoroketones. Epoxide 24 was used to prepare 5,8-disubstituted indolizidines and epoxide 25 was utilized in the formal synthesis of macrosphelide A. Epoxide 26 represents an AE reaction on the very electron deficient 2-cyanoallylic alcohols and epoxide 27 was an intermediate in the total synthesis of (+)-varantmycin. [Pg.56]

Enyne metathesis starting either from acetylenic boronates and homoallylic alcohols [104a,c] or from propargyl alcohols and allylboronates [104b] has recently been described. The resulting boronated dienes can be converted to allenes or cycloaddition products. The cross metathesis of vinylcyclopropyl-boronates directed toward the total synthesis of natural products has very recently been investigated by Pietruszka et al. [104d]. [Pg.256]

The discovery of carbene and carbenoid additions to olefins was the major breakthrough that initiated the tapping of this structural resource for synthetic purposes. Even so, designed applications of cyclopropane chemistry in total syntheses remain limited. Most revolve around electrophilic type reactions such as acid induced ring opening or solvolysis of cyclopropyl carbinyl alcohol derivatives. One notable application apart from these electrophilic reactions is the excellent synthesis of allenes from dibromocyclopropanes 2). [Pg.10]

With the proper choice of reaction conditions, diastereoselective synthesis of a-allenic alcohols 69 and 70 from propargylic epoxide 68 was achieved [80, 81], With RMgBr and 5 mol% of CuBr/2PnBu3, anti allenic alcohols 69 are obtained with up to 100% diastereoselectivity. On the other hand, syn allenic alcohols 70 can be prepared with 88-96% diastereoselectivity with RMgCl, Me3SiCl and 5mol% CuBr (Scheme 3.36). [Pg.108]

Jin and Weinreb reported the enantioselective total synthesis of 5,11-methano-morphanthridine Amaryllidaceae alkaloids via ethynylation of a chiral aldehyde followed by allenylsilane cyclization (Scheme 4.6) [10]. Addition of ethynylmagnesium bromide to 27 produced a 2 1 mixture of (S)- and (R)-propargyl alcohols 28. Both of these isomers were separately converted into the desired same acetate 28 by acetylation or Mitsunobu inversion reaction. After the reaction of 28 with a silyl cuprate, the resulting allene 29 was then converted into (-)-coccinine 31 via an allenylsilane cyclization. [Pg.145]

The synthesis of chiral liquid-crystalline allenes was reported by Tschierske and co-workers (Scheme 4.10) [14]. An asymmetric reduction of 41 with Alpine borane was a key step to an enantioenriched allene 44. After removal of the silyl group, the allenic alcohol was etherified by the Mitsunobu method to give 45, the first liquid-crystalline allene derivatives. [Pg.146]

The asymmetric synthesis of allenes via enantioselective hydrogenation of ketones with ruthenium(II) catalyst was reported by Malacria and co-workers (Scheme 4.11) [15, 16]. The ketone 46 was hydrogenated in the presence of iPrOH, KOH and 5 mol% of a chiral ruthenium catalyst, prepared from [(p-cymene) RuC12]2 and (S,S)-TsDPEN (2 equiv./Ru), to afford 47 in 75% yield with 95% ee. The alcohol 47 was converted into the corresponding chiral allene 48 (>95% ee) by the reaction of the corresponding mesylate with MeCu(CN)MgBr. A phosphine oxide derivative of the allenediyne 48 was proved to be a substrate for a cobalt-mediated [2 + 2+ 2] cycloaddition. [Pg.147]

Carreira and co-workers developed a highly efficient enantioselective addition of terminal alkynes to aldehydes giving propargyl alcohols by the mediation of zinc tri-flate and N-methylephedrine [17]. This reaction serves as a convenient and powerful synthetic route to a wide variety of enantioenriched allenes via propargyl alcohols. Dieter and Yu applied this alkynylation to the asymmetric synthesis of allenes (Scheme 4.12) [18]. Reaction of phenylacetylene with isobutyraldehyde afforded the propargyl alcohol in 80% yield with 99% ee, which was mesylated to 49 in quantitative yield. Reaction of 49 with the cyanocuprate 50 afforded the desired allene 51 with 83% ee. [Pg.147]

In 1963, an asymmetric synthesis of chloroallenes was reported by the SNi reaction of propargyl alcohols with thionyl chloride [34]. Since then, rearrangement of pro-pargylic precursors has been one of the most useful methodologies for the synthesis of allenes [35]. Treatment of 84, obtained by asymmetric reduction with LiAlH4-Dar-von alcohol complex, with thionyl bromide gave 86 as the major product via 85 (Scheme 4.21) [36],... [Pg.152]

Scheme 4.26 [2,3] Wittig rearrangement for asymmetric synthesis of allenic alcohol 102. Scheme 4.26 [2,3] Wittig rearrangement for asymmetric synthesis of allenic alcohol 102.
Spino and Frechette reported the synthesis of non-racemic allenic alcohol 168 by a combination of Shi s asymmetric epoxidation of 166 and its organocopper-mediat-ed ring-opening reaction (Scheme 4.43) [74]. Reduction of the ethynyl epoxide 169 with DIBAL-H stereoselectively gave the allenic alcohol 170, which was converted to mimulaxanthin 171 (Scheme 4.44) [75] (cf. Section 18.2.2). The DIBAL-H reduction was also applied in the conversion of 173 to the allene 174, which was a synthetic intermediate for peridinine 175 (Scheme 4.45) [76], The SN2 reduction of ethynyl epoxide 176 with DIBAL-H gave 177 (Scheme 4.46) [77]. [Pg.160]

Scheme 4.49 Asymmetric synthesis of allenic alcohols from cyclic carbonates or sulfites... Scheme 4.49 Asymmetric synthesis of allenic alcohols from cyclic carbonates or sulfites...
The nucleophilic attack on an acceptor-substituted allene can also take place at the acceptor itself, especially in the case of carbonyl groups of aldehydes, ketones or esters. Allenic esters are reduced to the corresponding primary alcohols by means of diisobutylaluminum hydride [18] and the synthesis of a vinylallene (allenene) by Peterson olefination of an allenyl ketone has also been reported [172]. The nucleophilic attack of allenylboranes 189 on butadienals 188 was investigated intensively by Wang and co-workers (Scheme 7.31) [184, 203, 248, 249]. The stereochemistry of the obtained secondary alcohol 190 depends on the substitution pattern. Fortunately, the synthesis of the desired Z-configured hepta-l,2,4-trien-6-ynes 191 is possible both by syn-elimination with the help of potassium hydride and by anti-elimination induced by sulfuric acid. Analogous allylboranes instead of the allenes 189 can be reacted also with the aldehydes 188 [250]. [Pg.385]

An early synthesis of allenylzinc reagents employed a two-step procedure in which monosubstituted allenes were subjected to lithiation in THF with tBuLi at -90 °C and the resulting allenyllithium intermediates were treated with ZnCl2. The allenylzinc reagents thus generated react in situ with aldehydes to afford mainly anti homopropargyl alcohols (Table 9.46) [98],... [Pg.565]

A stereoselective synthesis of the enantiomerically enriched allenic hydrocarbons was described in 2001 (Scheme 18.11) [37]. For example, hydrostannylation of the chiral propargylic alcohol 28 (obtained with 82% ee by enantioselective reduction of... [Pg.1002]


See other pages where Alcohols allene synthesis is mentioned: [Pg.75]    [Pg.154]    [Pg.393]    [Pg.10]    [Pg.337]    [Pg.69]    [Pg.272]    [Pg.114]    [Pg.98]    [Pg.68]    [Pg.75]    [Pg.141]    [Pg.144]    [Pg.145]    [Pg.148]    [Pg.152]    [Pg.158]    [Pg.163]    [Pg.164]    [Pg.165]    [Pg.177]    [Pg.371]    [Pg.402]    [Pg.408]    [Pg.411]    [Pg.412]   
See also in sourсe #XX -- [ Pg.727 ]




SEARCH



0-Allenic alcohols, chiral, synthesis

Alcohols synthesis

Allene synthesis

Allene-alcohols

Allenes synthesis

Allenic alcohols

Allenic alcohols synthesis

Allenic alcohols, vinylepoxidation cyclopentenone synthesis

Allenic synthesis

Propargylic alcohols allene synthesis

© 2024 chempedia.info