Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols aldol condensation

Cannizzaro reaction Two molecules of many aldehydes, under the influence of dilute alkalis, will interact, so that one is reduced to the corresponding alcohol, while the other is oxidized to the acid. Benzaldehyde gives benzyl alcohol and benzoic acid. Compare the aldol condensation. [Pg.78]

With concentrated alkali, a resin is formed from repeated aldol condensations between aldol, crotonaldehyde and acetaldehyde. A similar condensation occurs with acetone (b.p. 56°), but the equilibrium mixture contains only a few per cent, of diacetone alcohol (III), b.p. 166° ... [Pg.352]

Clalsen aldol condensation. This consists in the condensation of an aromatic aldehyde and an ester R—CHjCOOCjHj in the presence of finely divided sodium and a trace of alcohol at a low temperature. The catalyst is the alkoxide ion aqueous alkalis caimot be employed since they will hydrolyse the resulting ester. The product is an ap-unsaturated ester, for example ... [Pg.710]

Diacetone Alcohol. Diacetone alcohol (DAA) (4-hydroxy-4-methyl-2-pentanone) is a colorless, mild smelling Hquid which is completely miscible with water and most organic solvents. It is the simplest aldol condensation product of acetone, and because of its keto-alcohol functionahes it has special utility in the coatings industry where it is used to dissolve cellulose acetate to give solutions with high tolerance for water (115). [Pg.493]

DIBK can be produced by the hydrogenation of phorone which, in turn, is produced by the acid-catalyzed aldol condensation of acetone. It is also a by-product in the manufacture of methyl isobutyl ketone. Diisobutyl ketone ( 1.37/kg, October 1994) is produced in the United States by Union Carbide (Institute, West Virginia) and Eastman (Kingsport, Teimessee) (47), and is mainly used as a coating solvent. Catalytic hydrogenation of diisobutyl ketone produces the alcohol 2,6-dimethyl-4-heptanol [108-82-7]. [Pg.493]

Trimethylsilyl cyanide. This reagent readily silylates alcohols, phenols, carboxylic acids, and, more slowly, thiols and amines. Amides and related compounds do not react with it. The reagent has the advantage that a volatile gas (HCN is highly toxic) is the only by-product. In the following case, the use of added base resulted in retro aldol condensation ... [Pg.118]

In 1908, while working at University of Heidelberg, Auwers and Muller described the transformation of 4-methyl-2-cumaranone (3) to flavanol 6. Thus aldol condensation of 3 with benzaldehyde gave benzylidene derivative 4, which was brominated to give dibromide 5. Subsequent treatment of 5 with alcoholic KOH then furnished 2-methylflavonol 6. In the following years, Auwers published more extensively on the scope and limitations of this reaction. ... [Pg.262]

Tire mechanism of the Claisen condensation is similar to that of the aldol condensation and involves the nucleophilic addition of an ester enolate ion to the carbonyl group of a second ester molecule. The only difference between the aldol condensation of an aldeiwde or ketone and the Claisen condensation of an ester involves the fate of the initially formed tetrahedral intermediate. The tetrahedral intermediate in the aldol reaction is protonated to give an alcohol product—exactly the behavior previously seen for aldehydes and ketones (Section 19.4). The tetrahedral intermediate in the Claisen reaction, however, expels an alkoxide leaving group to yield an acyl substitution product—exactly the behavior previously seen for esters (Section 21.6). The mechanism of the Claisen condensation reaction is shown in Figure 23.5. [Pg.888]

The general features of this elegant and efficient synthesis are illustrated, in retrosynthetic format, in Scheme 4. Asteltoxin s structure presents several options for retrosynthetic simplification. Disassembly of asteltoxin in the manner illustrated in Scheme 4 furnishes intermediates 2-4. In the synthetic direction, attack on the aldehyde carbonyl in 2 by anion 3 (or its synthetic equivalent) would be expected to afford a secondary alcohol. After acid-catalyzed skeletal reorganization, the aldehydic function that terminates the doubly unsaturated side chain could then serve as the electrophile for an intermolecular aldol condensation with a-pyrone 4. Subsequent dehydration of the aldol adduct would then afford asteltoxin (1). [Pg.322]

Scheme 5 details the asymmetric synthesis of dimethylhydrazone 14. The synthesis of this fragment commences with an Evans asymmetric aldol condensation between the boron enolate derived from 21 and trans-2-pentenal (20). Syn aldol adduct 29 is obtained in diastereomerically pure form through a process which defines both the relative and absolute stereochemistry of the newly generated stereogenic centers at carbons 29 and 30 (92 % yield). After reductive removal of the chiral auxiliary, selective silylation of the primary alcohol furnishes 30 in 71 % overall yield. The method employed to achieve the reduction of the C-28 carbonyl is interesting and worthy of comment. The reaction between tri-n-butylbor-... [Pg.492]

Examples of name reactions can be found by first considering the nature of the starting material and product. The Wittig reaction, for instance, is in Section 199 (Alkenes from Aldehydes) and Section 207 (Alkenes frorm Ketones). The aldol condensation can be found in the chapters on difunctional compounds in Section 324 (Alcohol, Thiol-Aldehyde) and in Section 330 (Alcohol, Thiol-Ketone). [Pg.17]

The coupling of a secondary alcohol 1 with a primary alcohol 2 is achieved by the temporary removal of from each substrate which generates the ketone 3 and aldehyde 4 intermediates. A crossed aldol condensation occurs under the reaction conditions by the enolate derived from ketone 3 undergoing nucleophilic addition... [Pg.253]

As in the case of homogeneous acids as catalyst, we would also benefit from using solid ba.ses instead of dissolved bases as catalyst. A number of industrially important reactions are carried out with bases as catalyst. A well know example is the aldol condensation of acetone to diacetone alcohol, where dissolved NaOH in ethyl alcohol is u.sed as a catalyst at about 200 to 300 ppm level. However, heterogeneous pelleted sodamide can be used as a catalyst for this reaction and it obviates the problem of alkali removal from the product, which would otherwise lead to reversion of diacetone alcohol to acetone during distillation of the product mixture. [Pg.138]

Furthermore, there is no proof for over-oxidation of the primary alcohol of 5 in a carboxylate or for cleavage of the glycosidic bond and release of methanol under the conditions applied. However, additional signals in the NMR spectrum of the reaction mixture are observed between 80 and 85 ppm, which are ascribed to side products formed from 6 by aldol condensations in alkaline solution. [Pg.459]

The solid base catalysed aldol condensation of acetone was performed over a CsOH/Si02 catalyst using a H2 carrier gas. The products observed were diacetone alcohol, mesityl oxide, phorone, iso-phorone and the hydrogenated product, methyl isobutyl ketone. Deuterium tracer experiments were performed to gain an insight into the reaction mechanism. A mechanism is proposed. [Pg.363]

The aldol condensation of acetone to diacetone alcohol is the first step in a three-step process in the traditional method for the production of methyl isobutyl ketone (MIBK). This reaction is catalysed by aqueous NaOH in the liquid phase. (3) The second step involves the acid catalysed dehydration of diacetone alcohol (DAA) to mesityl oxide (MO) by H2S04 at 373 K. Finally the MO is hydrogenated to MIBK using Cu or Ni catalysts at 288 - 473 K and 3- 10 bar (3). [Pg.363]

A combination of a Heck reaction with an aldol condensation is observed on treatment of aromatic aldehydes or ketones as 6/1-151 with allylic alcohols as 6/1-152, as described by Dyker and coworkers [83]. The Pd-catalyzed reaction led to 6/1-154 via 6/1-153, in 55% yield (Scheme 6/1.40). [Pg.383]

A simple synthesis of allethrolone, the alcohol component of the allethrine (commercially important insecticide), is shown in Scheme 4.11. The conjugated addition of 3-phenylthio-5-hexene-2-one to 1-nitro-l-propene followed by the Nef reaction and aldol condensation gives allethrolone in good yield.68... [Pg.89]


See other pages where Alcohols aldol condensation is mentioned: [Pg.14]    [Pg.8]    [Pg.237]    [Pg.14]    [Pg.8]    [Pg.237]    [Pg.19]    [Pg.204]    [Pg.1014]    [Pg.50]    [Pg.99]    [Pg.247]    [Pg.431]    [Pg.84]    [Pg.228]    [Pg.89]    [Pg.74]    [Pg.431]    [Pg.150]    [Pg.1327]    [Pg.306]    [Pg.99]    [Pg.154]    [Pg.1014]    [Pg.280]    [Pg.71]    [Pg.78]    [Pg.264]    [Pg.158]    [Pg.203]   
See also in sourсe #XX -- [ Pg.712 ]

See also in sourсe #XX -- [ Pg.712 ]




SEARCH



Alcohols condensation

Aldol condensate

Aldol condensation

Condensations aldol condensation

© 2024 chempedia.info