Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol dehydrogenase and

Formally, in redox reactions there is transfer of electrons from a donor (the reductant) to the acceptor (the oxidant), forming a redox couple or pair. Oxidations in biological systems are often reactions in which hydrogen is removed from a compound or in which oxygen is added to a compound. An example is the oxidation of ethanol to acetaldehyde and then to acetic acid where the oxidant is NAD. catalyzed by alcohol dehydrogenase and acetaldehyde dehydrogenase, respectively. [Pg.142]

Figure 8.11 Reduction of cyclohexanone with alcohol dehydrogenase and rhodium complex using electric power [7b]. Figure 8.11 Reduction of cyclohexanone with alcohol dehydrogenase and rhodium complex using electric power [7b].
Hageman, R.H. Flesher, D. (1960). The effect of anaerobic environment on the activity of alcohol dehydrogenase and other enzymes of corn seedlings. Archives of Biochemistry and Biophysics, 87, 203-9. [Pg.176]

Figure 17.19 A membianeless ethanol/02 enz3fme fuel cell. Alcohol dehydrogenase and aldehyde dehydrogenase catalyze a stepwise oxidation of ethanol to acetaldehyde and then to acetate, passing electrons to the anode via the mediator NAD+/NADH. At the carhon cathode, electrons are passed via the [Ru(2,2 -bipyridyl)3] and biUverdin/bilimbin couples to bilirubin oxidase, which catalyzes O2 reduction to H2O. (a) Schematic representation of the reactions occruring. (b) Power/cmrent response for the ceU operating in buffered solution at pH 7.15, containing 1 mM ethanol and 1 mM NAD. Panel (b) reprinted from Topcagic and Minteer [2006]. Copyright Elsevier, 2006. Figure 17.19 A membianeless ethanol/02 enz3fme fuel cell. Alcohol dehydrogenase and aldehyde dehydrogenase catalyze a stepwise oxidation of ethanol to acetaldehyde and then to acetate, passing electrons to the anode via the mediator NAD+/NADH. At the carhon cathode, electrons are passed via the [Ru(2,2 -bipyridyl)3] and biUverdin/bilimbin couples to bilirubin oxidase, which catalyzes O2 reduction to H2O. (a) Schematic representation of the reactions occruring. (b) Power/cmrent response for the ceU operating in buffered solution at pH 7.15, containing 1 mM ethanol and 1 mM NAD. Panel (b) reprinted from Topcagic and Minteer [2006]. Copyright Elsevier, 2006.
Minteer and co-workers have also exploited the broad substrate specificity of PQQ-dependent alcohol dehydrogenase and aldehyde dehydrogenase from Gluconobacter species trapped within Nahon to oxidize either ethanol or glycerol at a fuel cell anode [Arechederra et al., 2007]. Although the alcohol dehydrogenase incorporates a series of heme electron transfer centers, it is unlikely that many enzyme molecules trapped within the mediator-free Nahon polymer are electronically engaged at the electrode. [Pg.626]

M Frezza, C Di Padova, G Pozzato, M Terpin, E Baraona, CS Lieber. High blood alcohol levels in women the rold of decreased gastric alcohol dehydrogenase and first-pass metabolism. N Engl J Med 322 95-99, 1990. [Pg.75]

Bluish, shimmering, brittle, relatively reactive metal. Is guite guickly covered with a protective oxide layer, which is why iron is treated with zinc With copper, forms the popular alloy brass, which was already known in antiquity. Used in batteries and as a stabilizer in plastics. Zinc oxide is used as a white pigment Zinc ions are essential to all life forms, e.g., as a component of alcohol dehydrogenase and many other enzymes. Hence human beings (70 kg) carry about 2.3 g (half as much as iron). [Pg.50]

Fig. 29. Decrease in intensity of nitroxide ESR signal npon addition of deuterated ethanolamine to ethanolamine ammonia lyase containing spin labeled cobinamide coenzyme. The two curves are for different concentrations of coenzyme to enzyme. The arrows indicate the point at which alcohol dehydrogenase and NADH was added to remove acetaldehyde from the enzyme. Note that full intensity is regained... Fig. 29. Decrease in intensity of nitroxide ESR signal npon addition of deuterated ethanolamine to ethanolamine ammonia lyase containing spin labeled cobinamide coenzyme. The two curves are for different concentrations of coenzyme to enzyme. The arrows indicate the point at which alcohol dehydrogenase and NADH was added to remove acetaldehyde from the enzyme. Note that full intensity is regained...
An isolated DNA molecule comprising DNA which encodes a group III alcohol dehydrogenase and DNA which encodes a BDS-active biocatalyst via nicotinamide adenosine dinucleotide-dependent manner. [Pg.303]

Hines LM, Stampfer MJ, Ma J et al. Genetic variation in alcohol dehydrogenase and the beneficial effect of moderate alcohol consumption on myocardial infarction. N Engl J Med 2001 344 549-555. [Pg.440]

Figure 12.6 (a) The catalytic site of liver alcohol dehydrogenase and (b) the essential features of its catalytic cycle. (Reprinted with permission from Parkin, 2004. Copyright (2004) American Chemical Society.)... [Pg.203]

It is worth noting that finding a secondary a-deuterium KIE larger than the EIE is not unique. In fact, it has been found in several other reactions. For instance, Cleland and co-workers (Cook et al., 1980,1981 Cook and Cleland, 1981a,b) found unexpectedly large secondary a-deuterium KIEs in some enzymatic reactions for example, a secondary a-deuterium KIE of 1.22 for the reduction of acetone catalysed by yeast alcohol dehydrogenase and a KIE of 1.34 for the reduction of cyclohexanone catalysed by horse-liver dehydrogenase. [Pg.214]

In the following year, Cleland and his coworkers reported further and more emphatic examples of the phenomenon of exaltation of the a-secondary isotope effects in enzymic hydride-transfer reactions. The cases shown in Table 1 for their studies of yeast alcohol dehydrogenase and horse-liver alcohol dehydrogenase would have been expected on traditional grounds to show kinetic isotope effects between 1.00 and 1.13 but in fact values of 1.38 and 1.50 were found. Even more impressively, the oxidation of formate by NAD was expected to exhibit an isotope effect between 1.00 and 1/1.13 = 0.89 - an inverse isotope effect because NAD" was being converted to NADH. The observed value was 1.22, normal rather than inverse. Again the model of coupled motion, with a citation to Kurz and Frieden, was invoked to interpret the findings. [Pg.41]

Horse liver alcohol dehydrogenase and the F93W mutant, hydride transfer from henzyl alcohol to NAD in MeOH/water. [Pg.52]

Figure 6. Enzyme-ligand Complex for Alcohol Dehydrogenase and a substituted pyiazole. Figure 6. Enzyme-ligand Complex for Alcohol Dehydrogenase and a substituted pyiazole.
C. Burstein, H. Ounissi, M. D. Legoy, G. Gellf, and D. Thomas, Recycling of NAD using coimmobilized alcohol dehydrogenase and E. coll, Appl. Biochem. [Pg.142]

Alcoholics are very susceptible to hypoglycemia. In addition to poor nutrition and the fact that alcohol is metaboUzed to acetate (acetyl CoA), the high amounts of cytoplasmic NADH formed by alcohol dehydrogenase and acetaldehyde dehydrogenase interfere with gluconeogenesis. High NADH favors the formation ofi... [Pg.199]

Alcohols are oxidized to aldehydes by the liver enzyme alcohol dehydrogenase, and aldehydes to carboxylic acids by aldehyde dehydrogenase. In mammals, monooxygenases can be induced by plant secondary metabolites such as a-pinene, caffeine, or isobornyl acetate. Reduction is less common and plays a role with ketones that cannot be further oxidized. Hydrolysis, the degradation of a compound with addition of water, is also less common than oxidation. [Pg.329]

Several enzymatic procedures have been developed for the synthesis of carbohydrates from acyclic precursors. Aldolases appear to be useful catalysts for the construction of sugars through asymmeteric C-C bond formation. 2-deoxy-KDO, 2-deoxy-2-fluoro-KDO, 9-0-acetyl sialic acid and several unusual sugars were prepared by a combined chemical and enzymatic approach. Alcohol dehydrogenases and lipases have been used in the preparation of chiral furans, hydroxyaldehydes, and glycerol acetonide which are useful as building blocks in carbohydrate synthesis. [Pg.317]


See other pages where Alcohol dehydrogenase and is mentioned: [Pg.26]    [Pg.109]    [Pg.551]    [Pg.106]    [Pg.224]    [Pg.394]    [Pg.172]    [Pg.22]    [Pg.364]    [Pg.597]    [Pg.626]    [Pg.320]    [Pg.152]    [Pg.157]    [Pg.534]    [Pg.335]    [Pg.450]    [Pg.279]    [Pg.197]    [Pg.197]    [Pg.260]    [Pg.79]    [Pg.113]    [Pg.126]    [Pg.697]    [Pg.79]    [Pg.90]    [Pg.121]    [Pg.633]    [Pg.636]    [Pg.413]   


SEARCH



Alcohol dehydrogenase

Alcohol dehydrogenases

Dehydrogenases alcohol dehydrogenase

© 2024 chempedia.info