Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption layer concentration

The Adsorption Layer Concentration. It is not possible to measure the concentration of the constituent ions in the adsorption layer. But it has been suggested that c may be calculated by means of the Langmuir equation (10,18,19)... [Pg.606]

The situation becomes most complicated in multicomponent systems, for example, if we speak about filling of plasticized polymers and solutions. The viscosity of a dispersion medium may vary here due to different reasons, namely a change in the nature of the solvent, concentration of the solution, molecular weight of the polymer. Naturally, here the interaction between the liquid and the filler changes, for one, a distinct adsorption layer, which modifies the surface and hence the activity (net-formation ability) of the filler, arises. Therefore in such multicomponent systems in the general case we can hardly expect universal values of yield stress, depending only on the concentration of the filler. Experimental data also confirm this conclusion [13],... [Pg.80]

This formula may be useful as a rheological method for determining the thickness of adsorption layer, which is formed as a result of interaction between a dispersion medium and filler, by the results of measuring the t] versus q> dependence. Especially curious phenomena, connected with surface effects, arise when a mixture of fillers of different nature is used according to concentration of an active filler the introduction of the second (inert) filler can either increase or decrease the viscosity of a multicomponent system [35],... [Pg.91]

The change in surface wettability (measured by the contact angle) with concentration for the three surfactants is plotted in Fig. 2.54 (Zhang and Manglik 2005). The contact angle reaches a lower plateau around the CMC where bilayers start to form on the surface. Wettability of non-ionic surfactants in aqueous solutions shows that the contact angle data attains a constant value much below CMC. Direct interactions of their polar chain are generally weak in non-ionics, and it is possible for them to build and rebuild adsorption layers below CMC. The reduced contact an-... [Pg.67]

FIG. 3 Plots of half the range of attraction (see Fig. 2) and the apparent thickness of the ethanol adsorption layer vs. the ethanol concentration. [Pg.5]

The equilibrium time required for adsorption of metals on biomass was studied for various initial metal concentrations and the results were shown in Figure 2. The adsorption increases rapidly with time in the initial period of adsorption and approaches an equilibrium at about 120min for all the concentrations studied (10-100 mg/L). The slow but gradual increase of metal biosorption after 120min indicates that the adsorption occurs through a continuous formation of adsorption layer in the final period of adsorption. [Pg.143]

Snyder and Soczewinski created and published, at the same time, another model called the S-S model describing the adsorption chromatographic process [19,61]. This model takes into account the role of the mobile phase in the chromatographic separation of the mixture. It assumes that in the chromatographic system the whole surface of the adsorbent is covered by a monolayer of adsorbed molecules of the mobile phase and of the solute and that the molecules of the mobile phase components occupy sites of identical size. It is supposed that under chromatographic process conditions the solute concentrations are very low, and the adsorption layer consists mainly of molecules of the mobile phase solvents. According to the S-S model, intermolecular interactions are reduced in the mobile phase but only for the... [Pg.89]

The specified decrease of the radical concentration in the gas phase near the film surface and in tiie layer adsorbed on the film is caused by the fact that interaction of these prides with cetene molecules becomes stronger as concentration of the latter increases. Another reason for the decrease of the radical concentration is the decrease of the diffusion coefficients of active particles in the gas and on the siu-face. This results in a growth of the time it takes for active particles from a gas phase to reach the film surface. Furthermore, it leads to an increase in the time it takes for active particles in the adsorption layer to reach the centers of chemisorption. [Pg.233]

It is assumed i) that the concentration c remains constant and ii) that transport by diffusion is rate controlling, i.e., the adsorbate arriving at the interface is adsorbed fast (intrinsic adsorption). This intrinsic adsorption, i.e., the transfer from the solution to the adsorption layer is not rate determining or in other words, the concentration of the adsorbate at the interface is zero iii) furthermore, the radius of the adsorbing particle is relatively large (no spherical diffusion). [Pg.104]

Thus, the time that is necessary to attain a certain coverage, 6, or the time necessary to cover the surface completely (9 = 1) is inversely proportional to the square of the bulk concentration (cf. Fig. 4.10b). Assuming molecular diffusion only, 8 is of the order of 2 minutes for a concentration of 10 5 M adsorbate when the diffusion coefficient D is 10 5 cm2 s1 and rmax = 4 1010 mol cm 2 1). Considering that transport to the surface is usually by turbulent diffusion, such a calculation illustrates that the formation of an adsorption layer is relatively rapid at concentrations above 10 6 M. But it can become slow at concentrations lower than 10 6 M. [Pg.104]

Fig. 4.8 compares data on the adsorption of lauric acid (C12) and caprylic acid (Cs) at a hydrophobic surface (mercury) as a function of the total bulk concentration for different pH-values. As is to be expected the molecular species becomes adsorbed at much lower concentrations than the carboxylate anions. The latter cannot penetrate into the adsorption layer without being accompanied by positively charged counterions (Na+). As was shown in Fig. 4.4, the adsorption data of pH = 4 can be plotted in the form of a Frumkin (FFG) equation. Fig. 4.9 compares the adsorption of fatty acids on a hydrophobic model surface (Hg) with that of the adsorption on Y-AI2O3. [Pg.107]

For pure nonionic EO adducts, increase in the number of oxyethylene groups in the molecule results in a decrease in the tendency to form micelles and an increase in the surface tension of the solution at the critical micelle concentration (1 ) (l. ) This change in surface activity is due to the greater surface area of the molecules in the adsorption layer and at the micellar surface as a result of the presence there of the highly hydrated polyoxyethylene chain. The reduction in the tendency to form micelles is due to the increase in the free energy of micelle formation as a result of partial dehydration of the polyoxyethylene chain during incorporation into the micelle ( 1 6) (17). [Pg.8]

Figure 2.22. (a) Disjoining pressure vs. thickness isotherm for an emulsion film stabilized by 0.1% BSA, ionic strength of 10 mol/1 NaCl, oil phase = hexadecane. The dots are the experimental data, dashed line is the double-layer contribution to the total disjoining pressure, and the solid line is the best fit done supposing additivity of the double-layer and steric forces, (b) Force vs. distance profiles for ferrofluid emulsions stabilized with mixed BSA-Tween-20 adsorption layers. The total concentration of the Tween-20 is kept constant = 5CMC, pH = 5.8. (Adopted from [78].)... [Pg.82]

Several repetitions of this experiment have shown that absorption was sometimes initiated at temperatures as low as 70 and 80°K. if more time is allowed. The increase observed with lower temperatures seems to be due to the higher surface concentration of molecules in the van der Waal s adsorption layer. Once the formation of the hydride phase was initiated at higher temperatures the growth of this new phase, even at temperatures below the initiation temperature, is probably due to the assistance of nuclei of the new phase which have opened up the passage into the interior. [Pg.168]

In some cases it has been found that the maximum on saturation adsorption of a solute from a solution corresponds to the formation of an adsorption layer one molecule thick. Thus Euler Zeit. Elehtrochem. xxviii. 446,1922) found that a maximum adsorption of silver ions by silver and gold leaf was attained in a 0 03 A solution. It was found that 5 5 and 8 5 to 9 mgm. of silver ions were adsorbed by a square metre of metallic silver and gold respectively, such a surface concentration is practically unimolecular. The adsorption of silver ions by silver bromide (K. Fajans, Zeit Phys. Ohem. cv. 256, 1928) was found on the other hand to be not complete, for only every fourth bromide ion in a silver bromide surface was found to adsorb a silver ion. Similar conclusions as to the unimolecular character of the adsorbed film in the case of chemical charcoal as an adsorbing agent for fatty and amino acids may be drawn from the data of Foder and Schonfeld Koll. Zeit xxxi. 76, 1922). [Pg.184]

The flotation of minerals is based on different attachment forces of hydrophobized and hydrophilic mineral particles to a gas bubble. Hydrophobized mineral particles adher to gas bubbles and are carried to the surface of the mineral dispersion where they form a froth layer. A mineral is hydrophobized by the adsorption of a suitable surfactant on the surface of the mineral component to be flotated. The hydrophobicity of a mineral particle depends on the degree of occupation of its surface by surfactant molecules and their polar-apolar orientation in the adsorption layer. In a number of papers the relationship was analyzed between the adsorption density of the surfactant at the mineral-water interface and the flotability. However, most interpretations of adsorption and flotation measurements concern surfactant concentrations under their CMC. [Pg.216]

At concentration > CMC, mineral flotability rapidly decreases regardless of the character of PDIs. This decrease in flotability is in a good agreement with the occurrence of adsorption maxima and gives evidence of the change in the character and structure of the adsorption layer. [Pg.224]

The appeareance of maxima on the adsorption isotherms and decrease in flotability can be explained by the hypothesis that in the presence of micelles no adsorption layer of the surfactant can be formed, the character of which corresponds to the equilibrium state only with monomers (sufficiently hydrophobic adsorption layer). Due to a heterogeneity of forces acting at the surfactant ion mineral interface it can be assumed that at concentrations S CMC some of the molecules will be bound much more firmly in a three-dimensional micelle than in... [Pg.224]

Surface diffusion can be studied with a wide variety of methods using both macroscopic and microscopic techniques of great diversity.98 Basically three methods can be used. One measures the time dependence of the concentration profile of diffusing atoms, one the time correlation of the concentration fluctuations, or the fluctuations of the number of diffusion atoms within a specified area, and one the mean square displacement, or the second moment, of a diffusing atom. When macroscopic techniques are used to study surface diffusion, diffusion parameters are usually derived from the rate of change of the shape of a sharply structured microscopic object, or from the rate of advancement of a sharply defined boundary of an adsorption layer, produced either by using a shadowed deposition method or by fast pulsed-laser thermal desorption of an area covered with an adsorbed species. The derived diffusion parameters really describe the overall effect of many different atomic steps, such as the formation of adatoms from kink sites, ledge sites... [Pg.205]

When a biopolymer mixture is either close to phase separation or lies in the composition space of liquid-liquid coexistence (see Figure 7.6a), the effect of thermodynamically unfavourable interactions is to induce biopolymer multilayer formation at the oil-water interface, as observed for the case of legumin + dextran (Dickinson and Semenova, 1992 Tsapkina et al, 1992). Figure 7.6b shows that there are three concentration regions describing the protein adsorption onto the emulsion droplets. The first one (Cprotein< 0.6 wt%) corresponds to incomplete saturation of the protein adsorption layer. The second concentration region (0.6 wt% < 6 proiem < 6 wt%) represents protein monolayer adsorption (T 2 mg m 2). And the third region (Cprotein > 6 wt%) relates to formation of adsorbed protein multilayers on the emulsion droplets. [Pg.242]

The adsorption of hafnium species on glass was found to increase with the solution pH and hafnium concentration. The effects on the adsorption of the solution preparation and age were studied and the equilibration time for the adsorption process was determined. The surface area of the glass sample was determined by the B.E.T. method using water vapor. The results are discussed in terms of the hydrolyzed hafnium(IV) species. At equilibrium, nearly monolayer coverage was obtained at pH > 4.5. Under these conditions hafnium is in the solution in its entirety in the form of neutral, soluble Hf(OHspecies. In the close packed adsorption layer the cross-sectional area of this species is 24 A which is nearly the same as for water on silica surfaces. [Pg.52]


See other pages where Adsorption layer concentration is mentioned: [Pg.180]    [Pg.242]    [Pg.142]    [Pg.250]    [Pg.4]    [Pg.7]    [Pg.656]    [Pg.708]    [Pg.270]    [Pg.271]    [Pg.275]    [Pg.216]    [Pg.97]    [Pg.94]    [Pg.600]    [Pg.605]    [Pg.162]    [Pg.26]    [Pg.33]    [Pg.218]    [Pg.208]    [Pg.121]    [Pg.497]    [Pg.14]    [Pg.363]    [Pg.182]    [Pg.185]    [Pg.282]    [Pg.150]   


SEARCH



Adsorption concentrations

Adsorption layer

Concentration adsorption layer, crystal growth

© 2024 chempedia.info